OF FILE HUMBER # BIOAVAILABILITY OF LEAD IN SOIL SAMPLES FROM THE NEW JERSEY ZINC NPL SITE PALMERTON, PENNSYLVANIA May 1996 Stan W. Casteel, DVM, PhD, DABVT Principal Investigator Larry D. Brown, DVM, MPH Margaret E. Dunsmore, BS Co-Investigators Veterinary Medical Diagnostic Laboratory College of Veterinary Medicine University of Missouri, Columbia Columbia, Missouri Christopher P. Weis, PhD, DABT Gerry M. Henningsen, DVM, PhD, DABT/DABVT Eva Hoffman, PhD Study Design and Technical Advisors US Environmental Protection Agency Region VIII Denver, Colorado William J. Brattin, PhD Tracy L. Hammon, MS Technical Consultants Roy F. Weston, Inc. Denver, Colorado #### **ACKNOWLEDGEMENTS** The work described in this report is the product of a team effort involving a number of people. In particular, the authors would like to acknowledge the efforts and support of the following: Dr. John Drexler at the University of Colorado, Boulder, performed the electron microprobe and particle size analyses of the test materials. Dr. Dan Paschal at the Centers for Disease Control and Prevention (CDCP) provided samples of blood for use as internal quality control samples, and also performed independent preparation and analyses of blood lead samples from the study for interlaboratory comparisons. Mr. Stan Christensen of the USEPA has provided oversight and quality assurance support regarding many aspects of the analytical phases of this study. Tamarac Medical performed the analyses of all of the samples generated during this study, including blood, liver, kidney, bone, feed, water, and miscellaneous other materials. Ms. Regina Prevosto at Roy F. Weston provided quality assurance oversight and review, and assisted in development of data organization and analysis protocols. Mr. Gerald Almquist at Roy F. Weston provided overall program management for the project, including management of subcontractors and coordination of interactions between team members. Ross P. Cowart, DVM, MS, DACVIM, University of Missouri, Columbia, provided expert evaluation of the health of the animals on study James R. Turk, DVM, PhD, DACVP, University of Missouri, Columbia, performed necropsy and pathological examination of all animals John T. Payne, DVM, MS, DACVS, University of Missouri, Columbia, performed the surgery to implant intravenous catheters and vascular access ports Steven L. Stockham, DVM, MS, DACVP, University of Columbia, Missouri, assessed clinical pathology data. #### **EXECUTIVE SUMMARY** A study using young swine as test animals was performed to measure the gastrointestinal absorption of lead from two soil samples from the New Jersey Zinc Superfund site located in Palmerton, Pennsylvania. Young swine were selected for use in the study primarily because the gastrointestinal physiology and overall size of young swine are similar to that of young children, who are the population of prime concern for exposure to soil lead. The two test soils were composites from different areas of the site. The first sample contained 3,230 ppm lead, and was referred to as the "Location 2" sample. The second sample contained 2,150 ppm lead, and was referred to as the "Location 4" sample. Groups of 5 swine were given average oral doses of 7.7, 23.2, or 69.7 mg/kg-d of Location 2 soil or 11.6, 34.9, or 104.7 mg/kg-d of Location 4 soil for 15 days. This corresponded to target average doses of 25, 75, or 225 ug/kg/day of lead. Other groups of animals were given a standard lead reference material (lead acetate) either orally at doses of 0, 25, or 75 ug Pb/kgday, or intravenously at a dose of 100 ug Pb/kg-day. The amount of lead absorbed by each animal was evaluated by measuring the amount of lead in the blood (measured on days -4, 0, 1, 2, 3, 5, 7, 9, 12, and 15), and the amount of lead in liver, kidney and bone (measured on day 15 at study termination). The amount of lead present in blood or tissues of animals exposed to test soils was compared to that for animals exposed to lead acetate, and the results were expressed as relative bioavailability (RBA). For example, a relative bioavailability of 50% means that 50% of the lead in soil was absorbed equally as well as lead from lead acetate, and 50% behaved as if it were not available for absorption. Thus, if lead acetate were 40% absorbed, the test material would be 20% absorbed. The RBA results for the two samples from the Palmerton site are summarized below: | | Test N | Naterial | |-------------------------|------------|------------| | Measurement
Endpoint | Location 2 | Location 4 | | Blood Lead AUC | 0.74 | 0.58 | | Liver Lead | 0.50 | 0.54 | | Kidney Lead | 0.42 | 0.34 | | Bone Lead | 0.47 | 0.39 | Because the estimates of RBA based on blood, liver, kidney, and bone do not agree in all cases, judgment must be used in interpreting the data. In general, we recommend greatest emphasis be placed on the RBA estimates derived from the blood lead data. This is because blood lead data are more robust and less susceptible to random errors than the tissue lead data, so there is greater confidence in RBA estimates based on blood lead. In addition, absorption into the central compartment is an early indicator of lead exposure, is the most relevant index of central nervous system exposure, and is the standard measurement endpoint in investigations of this sort. However, data from the tissue endpoints (liver, kidney, bone) also provide valuable information. We consider the <u>plausible range</u> to extend from the RBA based on blood AUC to the mean of the other three tissues (liver, kidney, bone). The <u>preferred range</u> is the interval from the RBA based on blood to the mean of the blood RBA and the tissue mean RBA. Our <u>suggested point estimate</u> is the mid-point of the preferred range. These values are presented below: | Relative | Test | Material | | | |----------------------------|------------|------------|--|--| | Bioavailability
of Lead | Location 2 | Location 4 | | | | Plausible Range | 0.74-0.46 | 0.58-0.42 | | | | Preferred Range | 0.74-0.60 | 0.58-0.50 | | | | Suggested Point Estimate | 0.67 0.54 | | | | These RBA estimates may be used to help assess lead risk at this site by refining the estimate of absolute bioavailability (ABA) of lead in soil, as follows: $$ABA_{soil} = ABA_{soluble} \cdot RBA_{soil}$$ Available data indicate that fully soluble forms of lead are about 50% absorbed by a child. Thus, the estimated absolute bioavailability of lead in the HL Smelter, LL Yard, and HL Mill soils are as follows: | Absolute | Test 1 | Material | |----------------------------|------------|------------| | Bioavailability
of Lead | Location 2 | Location 4 | | Plausible Range | 37%-23% | 29%-21% | | Preferred Range | 37%-30% | 29%-25% | | Suggested Point Estimate | 34% | 27% | These absolute bioavailability estimates are appropriate for use in EPA's IEUBK model for this site, although it is clear that there is both natural variability and uncertainty associated with these estimates. This variability and uncertainty arises from several sources, including: 1) the inherent variability in the responses of different individual animals to lead exposure, 2) uncertainty in the relative accuracy and applicability of the different measurement endpoints, 3) the extrapolation of measured RBA values in swine to young children, and 4) the potential effect of food in the stomach on lead absorption. Thus, the values reported above are judged to be reasonable estimates of typical lead absorption by children at this site, but should be interpreted with the understanding that the values are not certain. # TABLE OF CONTENTS | 1.0 | INTR | ODUCTION 1 | |------|------|--| | 2.0 | STUI | DY DESIGN 3 | | | 2.1 | Test Materials | | | 2.2 | Experimental Animals | | | 2.3 | Diet | | | 2.4 | Dosing | | | 2.5 | Collection of Biological Samples | | | 2.6 | Preparation of Biological Samples for Analysis | | | 2.7 | Lead Analysis | | 3.0 | DATA | A ANALYSIS | | | 3.1 | Overview | | | 3.2 | Fitting the Curves | | | 3.3 | Responses Below Quantitation Limits | | | 3.4 | Quality Assurance | | 4.0 | RESU | LTS 21 | | | 4.1 | Blood Lead vs. Time | | | 4.2 | Dose-Response Patterns | | | 4.3 | Calculated RBA Values | | | 4.4 | Estimated Absolute Bioavailability in Children | | | 4.5 | Uncertainty | | 5.0 | REFE | RENCES 30 | | APPE | NDIX | TITLE | | Δ | | DETAILED DATA DEVIEW | # LIST OF TABLES | TITLE | PAGE | |--|--| | Metal Analysis of Test Materials Geochemical Characteristics of Test Materials Composition of Animal Diet Dosing Protocol | 6 | | LIST OF FIGURES | | | TITLE | PAGE | | Lead Minerals Observed in Test Soils Lead Particle Size Distribution Body Weights of Test Animals Comparison of Duplicate Analyses Analysis of CDCP Check Samples Blood Lead vs. Day Blood Lead Dose-Response Bone Lead Dose-Response Liver Lead Dose-Response Kidney Lead Dose-Response | 7 9 18 19 22 23 24 25 | | | Metal Analysis of Test Materials Geochemical Characteristics of Test Materials Composition of Animal Diet Dosing Protocol LIST OF FIGURES TITLE Lead Minerals Observed in Test Soils Lead Particle Size Distribution Body Weights of Test Animals Comparison of Duplicate Analyses Analysis of CDCP Check Samples Blood Lead vs. Day Blood Lead Dose-Response Bone Lead Dose-Response
| # BIOAVAILABILITY OF LEAD IN SOIL SAMPLES FROM NEW JERSEY ZINC SITE PALMERTON, PENNSYLVANIA #### 1.0 INTRODUCTION ### Absolute and Relative Bioavailability Bioavailability is a concept that relates to the absorption of chemicals and how absorption depends upon the physical-chemical properties of the chemical and its medium (e.g., dust, soil, rock, food, water, etc.) and the physiology of the exposed receptor. Bioavailability is normally described as the fraction (or percentage) of a chemical which enters into the blood following an exposure of some specified amount, duration and route (usually oral). bioavailability may be measured using chemical levels in peripheral tissues such as liver, kidney, and bone, rather than blood. The fraction or percentage absorbed may be expressed either in absolute terms (absolute bioavailability, ABA) or in relative terms (relative bioavailability, RBA). Absolute bioavailability is measured by comparing the amount of chemical entering the blood (or other tissue) following oral exposure to test material with the amount entering the blood (or other tissue) following intravenous exposure to an equal amount of some dissolved form of the chemical. Similarly, relative bioavailability is measured by comparing oral absorption of test material to oral absorption of some fully soluble form of the chemical (e.g., either the chemical dissolved in water, or a solid form that is expected to fully dissolve in the stomach). For example, if 100 ug of dissolved lead were administered in drinking water and a total of 50 ug entered the blood, the ABA would be 0.50 (50%). Likewise, if 100 ug of lead in soil were administered and 30 ug entered the blood, the ABA for soil would be 0.30 (30%). If the lead dissolved in water were used as the reference substance for describing the relative amount of lead absorbed from soil, the RBA would be 0.30/0.50 = 0.60 (60%). These values (50% absolute bioavailability of dissolved lead and 30% absolute absorption of lead in soil) are the values currently employed as defaults in EPA's IEUBK model. It is important to recognize that simple solubility of a test material in water or some other fluid (e.g., a weak acid intended to mimic the gastric contents of a child) may not be a reliable estimator of bioavailability due to the non-equilibrium nature of the dissolution and transport processes that occur in the gastrointestinal tract (Mushak 1991). For example, fluid volume and pH are likely to be changing as a function of time, and transport of lead across the gut will prevent an approach to equilibrium concentrations, especially for poorly soluble lead compounds. However, information on the solubility of lead in different materials is useful in interpreting the importance of solubility as a determinant of bioavailability. To avoid confusion, the term "bioaccessability" is used to refer to the relative amount of lead that dissolves under a specified set of test conditions. For additional discussion about the concept and application of bioavailability see Goodman et al. (1990), Klaassen et al. (1996), and/or Gibaldi and Perrier (1982). # Using Bioavailability Data to Improve Exposure Calculations for Lead Data on bioavailability are important for evaluating exposure and potential health effects for a variety of different types of chemicals. This investigation focused mainly on evaluating the bioavailability of lead in various samples of soil or other solid materials from mining, milling or smelting sites. This is because lead may exist, at least in part, as poorly water soluble minerals (e.g., galena), and may also exist inside particles of inert matrix such as rock or slag of variable size, shape and association. These chemical and physical properties may tend to influence (usually decrease) the solubility (bioaccessability) and the absorption (bioavailability) of lead when ingested. When data are available on the bioavailability of lead in soil, dust, or other soil-like waste material at a site, this information can often be used to improve the accuracy of exposure and risk calculations at that site. The basic equation for estimating the site-specific RBA of a test soil is as follows: $$ABA_{soil} = ABA_{soluble} \cdot RBA_{soil}$$ where: ABA_{soil} = Absolute bioavailability of lead in soil ingested by a child ABA_{soluble} = Absolute bioavailability in children of some dissolved or fully soluble form of lead $RBA_{soil} = RBA$ for soil measured in swine Based on available information on lead absorption in humans and animals, the EPA estimates that the absolute bioavailability of lead from water and other fully soluble forms of lead is usually about 50% in children. Thus, when a reliable site-specific RBA value for soil is available, it may be used to estimate a site-specific absolute bioavailability as follows: $$ABA_{soil} = 50\% \cdot RBA_{soil}$$ In the absence of site-specific data, the absolute absorption of lead from soil, dust and other similar media is estimated by EPA to be about 30%. Thus, the default RBA used by EPA for lead in soil and dust compared to lead in water is 30%/50% = 60%. When the measured RBA in soil or dust at a site is found to be less than 60% compared to some fully soluble form of lead, it may be concluded that exposures to and risks from lead in these media at that site are probably lower than typical default assumptions. If the measured RBA is higher than 60%, absorption of and risk from lead in these media may be higher than usually assumed. TABLE 2-1 METAL ANALYSIS OF TEST MATERIALS | | Concentra | ation (ppm) | |-----------|------------|-------------| | Chemical | Location 2 | Location 4 | | Aluminum | 7750 | 7850 | | Antimony | 6.0 | 7.4 | | Arsenic | 110 | 134 | | Barium | 6850 | 1090 | | Beryllium | 1.4 | 2.0 | | Cadmium | 195 | 319 | | Calcium | 1160 | 2480 | | Chromium | 30.2 | 26.6 | | Cobalt | 18.8 | 17.4 | | Copper | 462 | 350 | | Iron | 25900 | 26700 | | Lead | 3230 | 2150 | | Magnesium | 725 | 684 | | Manganese | 6320 | 9230 | | Mercury | 1.7 | 1.1 | | Nickel | 15.0 | 26.8 | | Potassium | 515 | 512 | | Selenium | 11.8 | 6.9 | | Silver | 9.5 | 5.1 | | Sodium | 667. | 2100 | | Thallium | 1.9 | 0.85 | | Vanadium | 53.1 | 49.8 | | Zinc | . 6500 | 19100 | ### 2.0 STUDY DESIGN A standardized study protocol for measuring absolute and relative bioavailability of lead was developed based upon previous study designs and investigations that characterized the young pig model (Weis et al. 1995). The study was performed as nearly as possible within the spirit and guidelines of Good Laboratory Practices (GLP: 40 CFR 792). Standard Operating Procedures (SOPs) that included detailed methods for all aspects of the study were prepared, approved, and distributed to all study members prior to the study. The generalized study design, quality assurance project plan and all standard operating procedures are documented in a project notebook that is available through the administrative record. #### 2.1 Test Materials Soil samples were collected from four different locations at the Palmerton site. Each sample was a composite of four subsamples collected from four 1-foot square areas covering a 2-foot by 2-foot area at each sampling location. The depth of the soil collected was 1 to 2 inches. All samples consisted of dry, dusty leaf debris and organic soil. After initial screening, USEPA Region III selected two of the four samples for analysis in the swine bioavailability assay. These were referred to as "Location 2" and "Location 4". Both samples were sieved, and only the fine fraction (particles less than about 250 um in diameter) derived from each sample were evaluated. This is because it is believed that soil particles less than about 250 um are most likely to adhere to the hands and be ingested by hand-to-mouth contact, especially in young children. Table 2-1 lists the metal content of these samples measured using standard EPA Contract Laboratory program (CLP) methods. Inspection of the data in this table reveals that although the two test materials are similar in some regards, they do differ in the content of some important constituents (e.g., barium, calcium, lead, sodium, and zinc). These data suggest that these two samples are distinct, but it is beyond the scope of this project to attempt to identify the sources of lead and other metals in the soil samples. Each soil was well mixed and samples were analyzed by electron microprobe in order to identify a) how frequently particles of various lead minerals were observed, b) how frequently different types of mineral particles occur entirely inside particles of rock or slag ("included") and how often they occur partially or entirely outside rock or slag particles ("liberated"), c) the size distribution of particles of each mineral class, and d) approximately how much of the total amount of lead in the sample occurs in each mineral type. This is referred to as "relative lead mass". The results are summarized in Figure 2-1 and in Table 2-2. As seen in Figure 2-1, the most common form of lead in each soil sample, both in terms of particle frequency and relative lead mass, is manganese lead oxide. Most of the lead-bearing particles are small, with mean lengths of different mineral classes typically ranging from about 5-20 um (Table 2-2). The distribution of particles sizes for each sample is presented graphically in Figure 2.2. As noted above, small particles are often assumed to be more likely to adhere to the hands and be ingested and/or be transported into the house. Further, small FIGURE 2-1 LEAD MINERALS OBSERVED IN SITE SOILS TABLE 2-2 GEOCHEMICAL CHARACTERISTICS OF TEST MATERIALS^a | Mineral Form | Location 2 | | | | | | Location 4 | | | | | | |--------------------------------|------------------------------|----------------------------------|-----|------------|------|--------------------|--------------------|---------------------|--------------------|-----|------|------------------| |
Milicial Form | Particle | Freq.(%) | Раг | ticle Size | (um) | Relative | Particle Freq. (%) | | Particle size (um) | | (um) | Relative | | | Count-
Based ^b | Length-
Weighted ^c | min | max | mean | Lead
Mass * (%) | Count-
Based | Length-
Weighted | min | max | mean | Lead Mass
(%) | | Clays | 0.9% | 0.6% | 10 | 10 | 10 | 0.03% | 2.6% | 2.9% | 8 | 45 | 24 | 0.1% | | Anglesite (PbSO ₄) | 1.8% | 0.4% | 3 | 4 | 4 | 6.0% | 6.8% | 0.3% | 1 | 1 | 1 | 4.0% | | Lead barite | 9.6% | 5.0% | 1 | 41 | 8 | 1.4% | 0.9% | 0.5% | 12 | 12 | 12 | 0.1% | | Fe-Pb Oxide | 13.2% | 7.4% | 3 | 20 | 8 | 1.5% | 12.0% | 9.0% | 8 | 40 | 16 | 1.6% | | Mn-Pb Oxide | 59.6% | 68.8% | 2 | 100 | 17 | 66.1% | 55.6% | 80.8% | 4 | 110 | 31 | 65.8% | | Pb-Metal Oxide | | | | | | ND | 14.5% | 0.7% | ı | 1 | 1 | 7.0% | | Pb-Silicate | | | - | | | ND | 0.9% | 0.2% | 4 | 4 | 4 | 1.4% | | Lead Vanidate | | ** | | - | | ND | 4.3% | 3.0% | 5 | 35 | 15 | 17.7% | | Lead Phosphate | 14.0% | 17.4% | 1 - | 45 | 19 | 24.4% | 0.9% | 0.6% | 15 | 15 | 15 | 0.7% | | Zn-Pb Silicate | ** | | | | | ND | 1.7% | 2.1% | 12 | 40 | 26 | 1.6% | | Fe-Pb Sulfate | 0.9% | 0.5% | 8 | 8 | 8 | 0.6% | - | | | | | ND | ^{*} Samples were analyzed using an electron microprobe (JEOL 8600) to identify the number of particles of each lead species present in each sample and the particle size (largest dimension) of each particle. b Percentage of all lead-bearing particles of the mineral form shown e Percentage of total length of all lead particles consisting of mineral form shown ⁴ Based on longest dimension of each particle ^{*} Rough estimate of the percent of the total mass of lead present in each mineral form FIGURE 2-2 PARTICLE SIZE DISTRIBUTION particles have larger surface area-to-volume ratios than larger particles, and so may tend to dissolve more rapidly in the acidic contents of the stomach than larger particles. Thus, small particles (e.g., less than 25-50 um) are thought to be of greater potential concern to humans than larger particles (e.g., 100-250 um or larger). All of the lead-bearing particles in the sample from Location 2 and most (about 79%) of the particles from Location 4 are "liberated" (i.e., they have some or all of their surface exposed to the outside). This is of potential importance because liberated grains are thought to be more likely to be solubilized by acidic fluids in the stomach that are grains that are entirely confined within a glassy or rocky matrix. # 2.2 Experimental Animals Young swine were selected for use in these studies because they are considered to be a good physiological model for gastrointestinal absorption in children (Weis and LaVelle 1991). The animal were intact males of the Pig Improvement Corporation (PIC) genetically defined Line 26, and were purchased from Chinn Farms, Clarence, MO. The animals were held under quarantine to observe their health for one week before beginning exposure to test materials. To minimize weight variations between animals and groups, the number of animals purchased from the supplier was six more than needed for the study, and the six animals most different in body weight on day -4 (either heavier or lighter) were excluded from further study. The remaining animals were assigned to dose groups at random. When exposure began (day zero), the animals were about 5-6 weeks old (juveniles, weaned at 3 weeks) and weighed an average of about 14.6 kg. Animals were weighed every three days during the course of the study. The group mean body weights over the course of the study are shown in Figure 2-3. On average, animals gained about 0.6 kg/day, and the rate of weight gain was comparable in all groups. All animals were housed in individual lead-free stainless steel cages. Each animal was examined by a certified veterinary clinician (swine specialist) prior to being placed on study, and all animals were examined daily by an attending veterinarian while on study. Blood samples were collected for clinical chemistry and hematological analysis on days -4, 7, and 15 to assist in clinical health assessments. In this study, there were no animals that were judged by the principal investigator and the veterinary clinician to be seriously ill, and no animals were removed from the study due to concerns over poor health. ### 2.3 Diet Animals provided by the supplier were weaned onto standard pig chow purchased from MFA Inc., Columbia, MO. In order to minimize lead exposure from the diet, the animals were gradually transitioned from the MFA feed to a special low-lead feed (guaranteed less than 0.2 ppm lead, purchased from Zeigler Brothers, Inc., Gardners, PA) over the time interval from day -7 to day -3, and this feed was then maintained for the duration of the study. The feed was nutritionally complete and met all requirements of the National Institutes of Health-National Research Council. The typical nutritional components and chemical analysis of the feed is FIGURE 2-3 BODY WEIGHTS OF TEST ANIMALS presented in Table 2-3. Typically, the feed contained approximately 5.7% moisture, 1.7% fiber, and provided about 3.4 kcal of metabolizable energy per gram. Periodic analysis of feed samples during this program indicated the mean lead level (treating non-detects at one-half the quantitation limit of 0.05 ppm) was less than 0.05 ppm. Each day every animal was given an amount of feed equal to 5% of the mean body weight of all animals on study. Feed was administered in two equal portions of 2.5% of the mean body weight at each feeding. Feed was provided at 11:00 AM and 5:00 PM daily. Drinking water was provided ad libitum via self-activated watering nozzles within each cage. Periodic analysis of samples from randomly selected drinking water nozzles indicated the mean lead concentration (treating non-detects at one-half the quantitation limit) was less than 2 ug/L. ### 2.4 Dosing The protocol for exposing animals to lead is shown in Table 2-4. The dose levels for lead acetate were based on experience from previous investigations that showed that doses of 25-75 ug Pb/kg/day gave clear and measurable increases in lead levels in all endpoints measured (blood, liver, kidney, bone). The doses of test materials were set at the same level as lead acetate, with one higher dose (225 ug Pb/kg-day) included in case the test materials were found to yield very low responses. Animals were exposed to lead acetate or test material for 15 days, with the dose for each day being administered in two equal portions given at 9:00 AM and 3:00 PM (two hours before feeding). Doses were based on measured group mean body weights, and were adjusted every three days to account for animal growth. For animals exposed by the oral route, dose material was placed in the center of a small portion (about 5 grams) of moistened feed, and this was administered to the animals by hand. Most animals consumed the dose promptly, but occasionally some animals delayed ingestion of the dose for up to two hours (the time the daily feed portion was provided). These delays are noted in the data provided in Appendix A, but are not considered to be a significant source of error. Occasionally, some animals did not consume some or all of the dose (usually because the dose dropped from their mouth while chewing). All missed doses were recorded and the time-weighted average dose calculation for each animal was adjusted downward accordingly. For animals exposed by intravenous injection, doses were given via a vascular access port (VAP) attached to an indwelling venous catheter that had been surgically implanted according to standard operating procedures by a board-certified veterinary surgeon through the external jugular vein to the cranial vena cava about 3 to 5 days before exposure began. Actual mean doses, calculated from the administered doses and the measured body weights, are also shown in Table 2-4. TABLE 2-3 TYPICAL FEED COMPOSITION^a | Nutrient Name | Amount | Nutrient Name | Amount | |-----------------------|----------|-----------------------|---------------| | Protein | 20.1021% | Chlorine | 0.1911% | | Arginine | 1.2070% | Magnesium | 0.0533% | | Lysine | 1.4690% | Sulfur | 0.0339% | | Methionine | 0.8370% | Manganese | 20.4719 ppm | | Met+Cys | 0.5876% | Zinc | 118.0608 ppm | | Tryptophan | 0.2770% | Iron | 135.3710 ppm | | Histidine | 0.5580% | Copper | 8.1062 ppm | | Leucine | 1.8160% | Cobalt | 0.0110 ppm | | Isoleucine | 1.1310% | Iodine | 0.2075 ppm | | Phenylalanine | 1.1050% | Selenium | 0.3196 ppm | | Phe+Tyr | 2.0500% | Nitrogen Free Extract | 60.2340% | | Threonine | 0.8200% | Vitamin A | 5.1892 kIU/kg | | Valine | 1.1910% | Vitamin D3 | 0.6486 kIU/kg | | Fat | 4.4440% | Vitamin E | 87.2080 IU/kg | | Saturated Fat | 0.5590% | Vitamin K | 0.9089 ppm | | Unsaturated Fat | 3.7410% | Thiamine | 9.1681 ppm | | Linoleic 18:2:6 | 1.9350% | Riboflavin | 10.2290 ppm | | Linoleic 18:3:3 | 0.0430% | Niacin | 30.1147 ppm | | Crude Fiber | 3.8035% | Pantothenic Acid | 19.1250 ppm | | Ash | 4.3347% | Choline | 1019.8600 ppm | | Calcium | 0.8675% | Pyridoxine | 8.2302 ppm | | Phos Total | 0.7736% | Folacin | 2.0476 ppm | | Available Phosphorous | 0.7005% | Biotin | 0.2038 ppm | | Sodium | 0.2448% | Vitamin B12 | 23.4416 ppm | | Potassium | 0.3733% | | | ^a Nutritional values provided by Zeigler Bros., Inc. TABLE 2-4 DOSING PROTOCOL | | Number | | | Lead Dose | (ug Pb/kg-d) | |-------|---------------|--------------------------|-------------------|-----------|---------------------| | Group | of
Animals | Material
Administered | Exposure
Route | Target | Actual ^a | | 1 | 7 | Lead Acetate | Intravenous | 100 | 106 | | 2 | 5 | None | Oral | 0 | 0 | | 3 | 5 | Lead Acetate | Oral | 25 | 24.9 | | 4 | 5 | Lead Acetate | Oral | 75 | 74.7 | | 5 | 5 | Location 2 soil | Oral | 25 | 25.1 | | 6 | 5 | Location 2 soil | Oral | 75 | 74.9 | | 7 | 5 | Location 2 soil | Oral | 225 | 226 | | 8 | 5 | Location 4 soil | Oral | 25 | 25.2 | | 9 | 5 | Location 4 soil | Oral | 75 |
74.9 | | . 10 | 5 | Location 4 soil | Oral | 225 | 224 | Doses were administered in two equal portions given at 9:00 AM and 3:00 PM each day. Doses were based on the mean weight of the animals in each group, and were adjusted every three days to account for weight gain. ^a Calculated as the administered daily dose divided by the measured or extrapolated daily body weight, averaged over days 0-14 for each animal and each group. # 2.5 Collection of Biological Samples #### Blood Samples of blood were collected from each animal four days before exposure began (day -4), on the first day of exposure (day 0), and on days 1, 2, 3, 5, 7, 9, 12, and 15 following the start of exposure. All blood samples were collected by vena-puncture of the anterior vena cava, and samples were immediately placed in purple-top Vacutainer tubes containing EDTA as anticoagulant. Blood samples were collected each sampling day beginning at 8:00 AM, approximately one hour before the first of the two daily exposures to lead on the sampling day and 17 hours after the last lead exposure the previous day. This blood collection time was selected because the rate of change in blood lead resulting from the preceding exposures is expected to be relatively small after this interval (LaVelle et al. 1991, Weis et al. 1993), so the exact timing of sample collection relative to last dosing is not likely to be critical. Following collection of the final blood sample at 8:00 AM on day 15, all animals were humanely euthanized and samples of liver, kidney and bone (the right femur) were removed and stored in lead-free plastic bags for lead analysis. Samples of all biological samples collected were archived in order to allow for reanalysis and verification of lead levels, if needed, and possibly for future analysis for other metals (arsenic, cadmium, etc.). All animals were also subjected to detailed examination at necropsy by a certified veterinary pathologist in order to assess overall animal health. # 2.6 Preparation of Biological Samples for Analysis #### Blood One mL of whole blood was removed from the purple-top Vacutainer and added to 9.0~mL of "matrix modifier", a solution recommended by the Centers for Disease Control and Prevention (CDCP) for analysis of blood samples for lead. The composition of matrix modifier is 0.2% (v/v) ultrapure nitric acid, 0.5% (v/v) Triton X-100, and 0.2% (w/v) dibasic ammonium phosphate in deionized and ultrafiltered water. Samples of the matrix modifier were routinely analyzed for lead to ensure the absence of lead contamination. ### Liver and Kidney One gram of soft tissue (liver or kidney) was placed in a lead-free screw-cap teflon container with 2 mL of concentrated (70%) nitric acid and heated in an oven to 90°C overnight. After cooling, the digestate was transferred to a clean lead-free 10 mL volumetric flask and diluted to volume with deionized and ultrafiltered water. #### **Bone** The right femur of each animal was removed and defleshed, and dried at 100°C overnight. The dried bones were then placed in a muffle furnace and dry-ashed at 450°C for 48 hours. Following dry ashing, the bone was ground to a fine powder using a lead-free mortar and pestle, and 200 mg was removed and dissolved in 10.0 mL of 1:1 (v:v) concentrated nitric acid/water. After the powdered bone was dissolved and mixed, 1.0 mL of the acid solution was removed and diluted to 10.0 mL by addition of 0.1% (w/v) lanthanum oxide (La₂O₃) in deionized and ultrafiltered water. # 2.7 Lead Analysis Samples of biological tissue (blood, liver, kidney, bone) and other materials (food, water, reagents and solutions, etc.) were arranged in a random sequence and provided to EPA's analytical laboratory in a blind fashion (identified to the laboratory only by a chain of custody tag number). Each sample was analyzed for lead using a Perkin Elmer Model 5100 graphite furnace atomic absorption spectrophotometer. Internal quality assurance samples were run every tenth sample, and the instrument was recalibrated every 15th sample. A blank, duplicate and spiked sample were run every 20th sample. All results from the analytical laboratory were reported in units of ug Pb/L of prepared sample. The quantitation limit was defined as three-times the standard deviation of a set of seven replicates of a low-lead sample (typically about 2-5 ug/L). The standard deviation was usually about 0.3 ug/L, so the quantitation limit was usually about 0.9-1.0 ug/L (ppb). For prepared blood samples (diluted 1/10), this corresponds to a quantitation limit of 10 ug/L (1 ug/dL). For soft tissues (liver and kidney, diluted 1/10), this corresponds to a quantitation limit of 10 ug/kg (ppb) wet weight, and for bone (final dilution = 1/500) the corresponding quantitation limit is 0.5 ug/g (ppm) ashed weight. #### 3.0 DATA ANALYSIS #### 3.1 Overview Studies on the absorption of lead are often complicated because some biological responses to lead exposure may be non-linear functions of dose (i.e., tending to flatten out or plateau as dose increases). The cause of this non-linearity is uncertain but might be due either to non-linear absorption kinetics and/or to non-linear biological response per unit dose absorbed. When the dose-response curve for either the reference material (lead acetate) and/or the test material is non-linear, RBA is equal to the ratio of doses that produce equal responses (not the ratio of responses at equal doses). This is based on the simple but biologically plausible assumption that equal absorbed doses yield equal biological responses. Applying this assumption leads to the following general methods for calculating RBA from a set of non-linear experimental data: - 1. Plot the biological responses of individual animals exposed to a series of oral doses of soluble lead (e.g., lead acetate). Fit an equation which gives a smooth line through the observed data points. - 2. Plot the biological responses of individual animals exposed to a series of doses of test material. Fit an equation which gives a smooth line through the observed data. - 3. Using the best fit equations for reference material and test material, calculate RBA as the ratios of doses of test material and reference material which yield equal biological responses. Depending on the relative shape of the best-fit lines through the lead acetate and test material dose response curves, RBA may either be constant (dose-independent) or variable (dose-dependent). The principal advantage of this approach is that it is not necessary to understand the basis for a non-linear dose response curve (non-linear absorption and/or non-linear biological response) in order to derive valid RBA estimates. Also, it is important to realize that this method is very general, as it will yield correct results even if one or both of the dose-response curves are linear. In the case where both curves are linear, RBA is dose-independent and is simply equal to the ratio of the slopes of the best-fit linear equations. ### 3.2 Fitting the Curves There are a number of different mathematical equations which can yield reasonable fits with the dose-response data sets obtained in this study. Conceptually, any equation which gives a smooth fit would be acceptable, since the main purpose is to allow for interpolation of responses between test doses. In selecting which equations to employ, the following principles were applied: 1) mathematically simple equations were preferred over mathematically complex equations, 2) the shape of the curves had to be smooth and biologically realistic, without inflection points, maxima or minima, and 3) the general form of the equations had to be able to fit data not only from this one study, but from all the studies that are part of this project. After testing a wide variety of different equations, it was found that all data sets could be well fitted using one of the following three forms: <u>Linear (LIN):</u> Response = $a + b \cdot Dose$ Exponential (EXP): Response = $a + c \cdot (1-exp(-d \cdot Dose))$ Combination (LIN+EXP): Response = $a + b \cdot Dose + c \cdot (1-exp(-d \cdot Dose))$ Although underlying mechanism was not considered in selecting these equations, the linear equation allows fitting data that do not show evidence of saturation in either uptake or response, while the exponential and mixed equations allow evaluation of data that appear to reflect some degree of saturation in uptake and/or response. Each dose-response data set was fit to each of the equations above. If one equation yielded a fit that was clearly superior (as judged by the value of the adjusted correlation coefficient R²) to the others, that equation was selected. If two or more models fit the data approximately equally well, then the simplest model (that with the fewest parameters) was selected. In the process of finding the best-fits of these equations to the data, the values of the parameters (a, b, c, and d) were subjected to some constraints, and some data points (those that were outside the 95% prediction limits of the fit) were excluded. These constraints and outlier exclusion steps are detailed in Appendix A (Section 3). In general, most blood lead AUC dose-response curves were best fit by the exponential equation, and most dose-response curves for liver, kidney and bone were best fit by linear equations. # 3.3 Responses Below Quantitation Limit In some cases, most or all of the responses in a group of animals were below the quantitation limit for the endpoint being measured. For example, this was normally the case for blood lead values in unexposed animals (both on day -4 and day 0, and in control animals), and also occurred during the early days in the study for animals given test materials with low bioavailability. In these cases, all animals which yielded responses below the quantitation limit were evaluated as if they had responded at one-half the quantitation limit. ### 3.4 Quality Assurance A number of steps were taken throughout
this study and the other studies in this project to ensure the quality of the results. These steps are summarized below. # **Duplicates** A randomly selected set of about 5% of all samples generated during the study were submitted to the laboratory in a blind fashion for duplicate analysis. The raw data are presented in Appendix A, and Figure 3-1 plots the results for blood (Panel A, upper) and for bone, liver and kidney (Panel B, lower). As seen, there was good intra-laboratory reproducibility between duplicate samples for both blood and tissues, with linear regression lines having a slope near 1.0, an intercept near zero, and an R² value near 1.0. #### Standards The Centers for Disease Control and Prevention (CDCP) provides a variety of blood lead "check samples" for use in quality assurance programs for blood lead studies. Each time a group of blood samples was prepared and sent to the laboratory for analysis, several CDCP check samples of different concentrations were included in random order and in a blind fashion. The results for the samples submitted during this study are presented in Appendix A, and the values are plotted in Figure 3-2 (Panel A, upper). As seen, the analytical results obtained for the check samples tended to be low for the "low" and "medium" standards employed (nominal concentrations = 1.7 ug/dL and 4.8 ug/dL). Although there was some scatter in the results for the "high" check sample, the mean of all results (14.5 ug/dL) is close to the nominal value of this standard (14.9 ug/dL). # Interlaboratory Comparison An interlaboratory comparison of blood lead analytical results was performed by sending a set of 20 randomly selected whole blood samples from this study to CDCP for blind independent preparation and analysis. The results are presented in Appendix A, and the values are plotted in Figure 3-2 (Panel B, lower). As seen, the values obtained by EPA tended to be slightly lower (about 15%) than the values reported by CDCP. The reason for this apparent discrepancy between the EPA laboratory and the CDCP laboratory is not clear, but might be related to differences in sample preparation techniques. Regardless of the reason, the differences are sufficiently small that they are likely to have no significant effect on calculated RBA values. In particular, it is important to realize that if both the lead acetate and test soils dose-response curves are biased by the same factor, then the biases cancel in the calculation of the ratio. # Data Audits and Spreadsheet Validation All analytical data generated by EPA's analytical laboratory were validated prior to being released in the form of a database file. These electronic data files were "decoded" (linking the sample tag to the correct animal and day) using Microsoft's database system ACCESS® (Version 5 for Windows). To ensure that no errors occurred in this process, original electronic files were printed out and compared to printouts of the tag assignments and the decoded data. FIGURE 3-1 COMPARISION OF DUPLICATE ANALYSES PALMERTON FIGURE 3-2 CDCP CHECK SAMPLES FOR PALMERTON NPL SITE All spreadsheets used to manipulate the data and to perform calculations (see Appendix A) were validated by hand-checking random cells for accuracy. ### 4.0 RESULTS The following sections provide results based on the group means for each dose group investigated in this study. Appendix A provides detailed data for each individual animal. Results from this study will be compared and contrasted with the results from other studies in a subsequent report. #### 4.1 Blood Lead vs Time Figure 4-1 shows the group mean blood lead values as a function of time during the study. As seen, blood lead values began at or below quantitation limits (about 1 ug/dL) in all groups, and remained at or below quantitation limits in control animals (Group 2). In animals given repeated oral doses of lead acetate (Groups 3 and 4), Location 2 soil (Groups 5-7, upper panel), or Location 4 soil (Groups 8-10, lower panel), blood levels began to rise within 1-2 days, and tended to plateau by the end of the study (day 15). A similar pattern was observed in animals exposed to lead acetate by intravenous injection (Group 1). # 4.2 Dose-Response Patterns ### **Blood Lead** The measurement endpoint used to quantify the blood lead response was the area under the curve (AUC) for blood lead vs time (days 0-15). AUC was selected because it is the standard pharmacokinetic index of chemical uptake into the blood compartment, and is relatively insensitive to small variations in blood lead level by day. The AUC was calculated using the trapezoidal rule to estimate the AUC between each time point that a blood lead value was measured (days 0, 1, 2, 3, 5, 7, 9, 12, and 15), and summing the areas across all time intervals in the study. The detailed data and calculations are presented in Appendix A, and the results are shown graphically in Figure 4-2. Each data point reflects the group mean exposure and group mean response, with the variability in dose and response shown by standard error bars. The figure also shows the best-fit equation through each data set. As seen, the dose response pattern is non-linear for both the soluble reference material (lead acetate, abbreviated "PbAc"), and for each of the two test soils. Dose response curves for soil from both Location 2 and Location 4 are lower than those seen for lead acetate, with Location 4 being the lowest. ### Tissue Lead The dose-response data for lead levels in bone, liver and kidney (measured at sacrifice on day 15) are detailed in Appendix A, and are shown graphically in Figures 4-3 through 4-5, respectively. FIGURE 4-1 GROUP MEAN BLOOD LEAD BY DAY FOR NEW JERSEY ZINC NPL SITE, PALMERTON, PA FIGURE 4-2 BLOOD LEAD DOSE-RESPONSE, GROUP MEANS ± SEMS FOR NEW JERSEY ZINC NPL SITE, PALMERTON, PA FIGURE 4-3 BONE LEAD DOSE-RESPONSE, GROUP MEANS ± SEMS FOR NEW JERSEY ZINC NPL OUTE, PALMERTON, PA FIGURE 4-4 LIVER LEAD DOSE-RESPONSE, GROUP MEANS + SEMS FOR NEW JERSEY ZINC NPL SITE, PALMERTON, PA 400 LIVER IV Offscale Mean Dose = 106 +/- 3.3 350 Mean Resp = 1517 +/- 187 300 Best Fit Eqn for Loc 4 Soil Liver Lead (ug/kg wet wt.) 250 y=18.4+1.10X 200 Best Fit Eqn for PbAc y=18.4+2.04X 150 Best Fit Eqn for Loc 2 Soil Measured Data Points y=18.4+1.01X ♠ Avg PbAc 100 ■ Avg Loc2 ▲ Avg Loc4 50 100 150 200 250 300 Lead Dose (ug Pb/kg-d) FIGURE 4-5 KIDNEY LEAD DOSE-RESPONSE, GROUP MEANS ± SEMS FOR NEW JERSEY ZINC NPL SITE, PALMERTON, PA As seen, all of these dose response curves for tissues are fit by linear equations. The responses of the two test soils tend to be generally similar to each other, and the responses for each of the three tissues (liver, bone and kidney) all appear to be lower than for lead acetate. # 4.3 Calculated RBA Values Relative bioavailability values were calculated for each test material for each measurement endpoint (blood, bone, liver, kidney) using the method described in Section 3.0. The results are shown below: | | Test | material | |-------------------------|------------|------------| | Measurement
Endpoint | Location 2 | Location 4 | | Blood Lead AUC | 0.74 | 0.58 | | Liver Lead | 0.50 | 0.39 | | Kidney Lead | 0.42 | 0.54 | | Bone Lead | 0.47 | 0.34 | ### Recommended RBA Values As shown above, for each test material, there are four independent estimates of RBA (based on blood, liver, kidney, and bone), and the values do not agree in all cases. In general, we recommend greatest emphasis be placed on the RBA estimates derived from the blood lead data. There are several reasons for this recommendation, including the following: - Blood lead calculations are based on multiple measurements over time, and so are statistically more robust than the single measurements available for tissue concentrations. Further, blood is a homogeneous medium, and is easier to sample than complex tissues such as liver, kidney and bone. Consequently, the AUC endpoint is less susceptible to random measurement errors, and RBA values calculated from AUC data are less uncertain. - 2. Blood is the central compartment and one of the first compartments to be affected by absorbed lead. In contrast, uptake of lead into peripheral compartments (liver, kidney, bone) depend on transfer from blood to the tissue, and may be subject to a variety of toxicokinetic factors that could make bioavailability determinations more complicated. - 3. The dose-response curve for blood lead is non-linear, similar to the non-linear dose-response curve observed in children (e.g., see Sherlock and Quinn 1986). Thus, the response of this endpoint is known to behave similarly in swine as in children, and it is not known if the same is true for the tissue endpoints. 4. Blood lead is the classical measurement endpoint for evaluating exposure and health effects in humans, and the health effects of lead are believed to be proportional to blood lead levels. However, data from the tissue endpoints (liver, kidney, bone) also provide valuable information. We consider the <u>plausible range</u> to extend from the RBA based on blood AUC to the mean of the other three tissues (liver, kidney, bone). The <u>preferred range</u> is the interval from the RBA based on blood to the mean of the blood RBA and the tissue mean RBA. Our <u>suggested point estimate</u> is the mid-point of the preferred range. These values are presented below: | Relative | Test | Material | | | |--------------------------|---------------------|------------|--|--| | Bioavailability of Lead | Location 2 | Location 4 | | | | Plausible Range | 0.74-0.46 0.58-0.42 | | | | | Preferred Range | 0.74-0.60 | 0.58-0.50 | | | | Suggested Point Estimate | 0.67 0.54 | | | | # 4.4 Estimated Absolute Bioavailability in Children These RBA estimates may be used to help assess lead risk at this site by refining the estimate of absolute bioavailability (ABA) of lead in soil, as follows: $$ABA_{soil} = ABA_{soluble} \cdot RBA_{soil}$$ Available data indicate that
fully soluble forms of lead are about 50% absorbed by a child (USEPA 1991, 1994). Thus, the estimated absolute bioavailability of lead in site soils are calculated as follows: $$ABA_{Location 2} = 50\% \cdot RBA_{Location 2}$$ $$ABA_{Location 4} = 50\% \cdot RBA_{Location 4}$$ Based on the RBA values shown above, the estimated absolute bioavailabilities in children are as follows: | Absolute | Test 1 | Material | | | |----------------------------|------------|------------|--|--| | Bioavailability
of Lead | Location 2 | Location 4 | | | | Plausible Range | 37%-23% | 29%-21% | | | | Preferred Range | 37%-30% | 29%-25% | | | | Suggested Point Estimate | 34% 27% | | | | # 4.5 Uncertainty These absolute bioavailability estimates are appropriate for use in EPA's IEUBK model for this site, although it is clear that there is both variability and uncertainty associated with these estimates. This variability and uncertainty arises from several sources. First, differences in physiological and pharmacokinetic parameters between individual animals leads to variability in response even when exposure is the same. Because of this inter-animal variability in the responses of different animals to lead exposure, there is mathematical uncertainty in the best fit dose-response curves for both lead acetate and test material. This in turn leads to uncertainty in the calculated values of RBA, because these are derived from the two best-fit equations. Second, there is uncertainty in how to weight the RBA values based on the different endpoints. and how to select a point estimate for RBA that is applicable to typical site-specific exposure levels. Third, there is uncertainty in the extrapolation of measured RBA values in swine to young children. Even though the immature swine is believed to be a useful and meaningful animal model for gastrointestinal absorption in children, it is possible that differences in stomach pH, stomach emptying time, and other physiological parameters may exist and that RBA values in swine may not be precisely equal to values in children. Finally, studies in humans reveal that lead absorption is not constant even within an individual, but varies as a function of many factors (mineral intake, health status, etc.). One factor that may be of special importance is time after the last meal, with the presence of food tending to reduce lead absorption. The values of RBA measured in this study are intended to estimate the maximum uptake that occurs when lead is ingested in the absence of food. Thus, these values may be somewhat conservative for children who ingest lead along with food. The magnitude of this bias is not known, although preliminary studies in swine suggest the factor may be relatively minor. ### 5.0 REFERENCES - Gibaldi, M. and Perrier, D. 1982. *Pharmacokinetics* (2nd edition) pp 294-297. Marcel Dekker, Inc, NY, NY. - Goodman, A.G., Rall, T.W., Nies, A.S., and Taylor, P. 1990. The Pharmacological Basis of Therapeutics (8th ed.) pp. 5-21. Pergamon Press, Inc. Elmsford, NY. - Klaassen, C.D., Amdur, M.O., and Doull, J. (eds). 1996. Cassarett and Doull's Toxicology: The Basic Science of Poisons. pp. 190. McGraw-Hill, Inc. NY, NY - La Velle, J.M., Poppenga, R.H., Thacker, B.J., Giesy, J.P., Weis, C., Othoudt R, and Vandervoot C. 1991. Bioavailability of Lead in Mining Waste: An Oral Intubation Study in Young Swine. In: <u>The Proceedings of the International Symposium on the Bioavailability and Dietary Uptake of Lead.</u> Science and Technology Letters 3:105-111. - Mushak, P. 1991. Gastro-intestinal Absorption of Lead in Children and Adults: Overview of Biological and Biophysico-chemical Aspects. In: <u>The Proceedings of the International Symposium on the Bioavailability and Dietary Uptake of Lead.</u> Science and Technology Letters 3:87-104. - Sherlock, J.C., and Quinn, M.J. 1986. Relationship Between Blood Lead Concentration and Dietary Intake in Infants: the Glasgow Duplicate Diet Study 1979-1980. Food Additives and Contaminants 3:167-176. - USEPA 1991. Technical Support Document on Lead. United States Environmental Protection Agency, Environmental Criteria and Assessment Office. ECAO-CIN-757. - USEPA 1994. Guidance Manual for the Integrated Exposure Uptake Biokinetic Model for Lead in Children. United States Environmental Protection Agency, Office of Emergency and Remedial Response. Publication Number 9285.7-15-1. EPA/540/R-93/081. - Weis, C.P. and LaVelle, J.M. 1991. Characteristics to consider when choosing an animal model for the study of lead bioavailability. In: <u>The Proceedings of the International Symposium on the Bioavailability and Dietary Uptake of Lead.</u> Science and Technology Letters 3:113-119. - Weis, C.P., Henningsen, G.M., Poppenga, R.H., and Thacker, B.J. 1993. Pharmacokinetics of Lead in Blood of Immature Swine Following Acute Oral and Intravenous Exposure. The Toxicologist 13(1):175. - Weis, C.P., Poppenga, R.H., Thacker, B.J., Henningsen, G.M., and Curtis, A. 1995. "Design of Pharmacokinetic and Bioavailability Studies of Lead in an Immature Swine Model." In: LEAD IN PAINT, SOIL, AND DUST: HEALTH RISKS, EXPOSURE STUDIES, CONTROL MEASURES, MEASUREMENT METHODS, AND QUALITY ASSURANCE. ASTM STP 1226, Michael E. Beard and S. D. Allen Iske, Eds., American Society for Testing and Materials, Philadelphia, 1995. # APPENDIX A # DETAILED DATA AND CALCULATIONS FOR USEPA SWINE BIOAVAILABILITY STUDY PHASE II, EXPERIMENT 9 NEW JERSEY ZINC NPL SITE PALMERTON, PA #### APPENDIX A #### **DETAILED DATA SUMMARY** #### 1.0 OVERVIEW Performance of this study involved collection and reduction of a large number of data items. All of these data items and all of the data reduction steps are contained in a Microsoft Excel spreadsheet named "PALMERTN.XLS" that is available upon request from the administrative record. This file is intended to allow detailed review and evaluation by outside parties of all aspects of the study. The following sections of this Appendix present printouts of selected tables and graphs from the XLS file. These tables and graphs provide a more detailed documentation of the individual nimal data and the data reduction steps performed in this study than was presented in the main text. Any additional details of interest to a reader can be found in the XLS spreadsheet. # 2.0 RAW DATA AND DATA REDUCTION STEPS # 2.1 Body Weights and Dose Calculations Animals were weighed on day -1 (one day before exposure) and every three days thereafter during the course of the study. Doses of lead for the three days following each weighing were based on the group mean body weight, adjusted by addition of 1 kg to account for the expected weight gain over the interval. After completion of the experiment, body weights were estimated by interpolation for those days when measurements were not collected, and the actual administered doses (ug Pb/kg) were calculated for each day and then averaged across all days. If an animal missed a dose or was given an incorrect dose, the calculation of average dose corrected for these factors. These data and data reduction steps are shown in Tables A-1 and A-2. Doses which required adjustment are shown by a heavy black box outlining the value in Table A-1. #### 2.2 Blood Lead vs Time Blood lead values were measured in each animal on days -4, 0, 1, 2, 3, 5, 7, 9, 12, and 15. The raw laboratory data (reported as ug/L of diluted blood) are shown in Table A-3. These data were adjusted as follows: a) non-detects were evaluated by assuming a value equal to one-half the quantitation limit, and b) the concentrations in diluted blood were converted to units of ug/dL in whole blood by dividing by a factor of 1 dL of blood per L of diluted sample. The results are shown in the right-hand column of Table A-3. Figures A-1 to A-3 plot the results for individual animals organized by group and by day. Figure A-4 plots the mean for each dosing group by day. After adjustment as above, values that were more than a factor of 1.5 above or below the group mean for any given day were "flagged" by computer as potential outliers. These values are shown in Table A-4 by cells that are shaded gray. Each data point identified in this way was reviewed and professional judgment was used to decide if the value should be retained or excluded. In order to avoid inappropriate biases, blood lead outlier designations were restricted to values that were clearly aberrant from a time-course and/or dose-response perspective. In this study, none of the flagged values were excluded (Table A-5). #### 2.3 Blood Lead AUC The area under the blood lead vs time curve for each animal was calculated by finding the area under the curve for each time step using the trapezoidal rule: $$AUC(d_i \text{ to } d_i) = 0.5*(r_i+r_i)*(d_i-d_i)$$ where: ``` d = day number r = response (blood lead value) on day i (r_i) or day j (r_i) ``` The areas were then summed for each of the time intervals to yield the final AUC for each animal. These calculations are shown in Table A-6. If a blood lead value was missing (either because of problems with sample preparation, or because the measured value was excluded as an outlier), the blood lead value for that day was estimated by linear interpolation. # 2.4 Liver, Kidney and Bone Lead Data At sacrifice (day 15), samples of liver, kidney and bone (femur) were removed and analyzed for lead. The raw data (expressed as ug Pb/L of prepared sample) are summarized in Table A-7. These data were adjusted as follows: a) non-detects were evaluated by assuming a value equal to one-half the quantitation limit, and b) the concentrations in prepared sample were converted to units of concentration in the original biological sample by dividing by the following factors: Liver: 0.1 kg wet weight/L prepared sample Kidney: 0.1 kg wet weight/L prepared sample Bone: 2 gm ashed weight/L prepared sample The resulting values are shown in the right-hand column of Table A-7. #### 3.0 CURVE FITTING # **Basic Equations** A
commercial curve-fitting program (Table Curve-2DTM Version 2.0 for Windows, available from Jandel Scientific) was used to derive best fit equations for each of the individual dose-response data sets derived above. A least squares regression method was used for both linear and non-linear equations. As discussed in the text, three different user-defined equations were fit to each data set: Linear (LIN): Response = $a + b \cdot Dose$ Exponential (EXP): Response = $a + c \cdot (1-exp(-d \cdot Dose))$ <u>Combination (LIN+EXP)</u>: Response = $a + b \cdot Dose + c \cdot (1-exp(-d \cdot Dose))$ #### **Constraints** In the process of finding the best-fits of these equations to the data, the values of the parameters (a, b, c, and d) were constrained as follows: - Parameter "a" (the intercept, equal to the baseline or control value of the measurement endpoint) was constrained to be non-negative and was forced in all cases to be the same for the reference material (lead acetate) and the test materials. This is because, by definition, all dose-response curves for groups of animals exposed to different materials must arise from the same value at zero dose. In addition, for blood lead data, "a" was constrained to be equal to the mean of the control group ± 20% (typically 7.5 ± 1.5 AUC units). - Parameter "b" (the slope of the linear dose-response line) was constrained to non-negative values, since all of the measurement endpoints evaluated are observed to increase, not decrease, as a function of lead exposure. - Parameter "c" (the plateau value of the exponential curve) was constrained to be non-negative, and was forced to be the same for the reference material (lead acetate) and the test material. This is because: 1) it is expected on theoretical grounds that the plateau (saturation level) should be the same regardless of the source of lead, and 2) curve-fitting of individual curves tended to yield values of "c" that were close to each other and were not statistically different. - Parameter "d" (which determines where the "bend" in the exponential equation occurs) was constrained to be greater than 0.0045 for the lead acetate blood lead (AUC) dose-response curve. This constraint was judged to be necessary because the weight of evidence from all studies clearly showed the lead acetate blood lead dose response curve was non-linear and was best fit by an exponential equation, but in some studies there were only two low doses of lead acetate used to define the dose-response curve, and this narrow range data set could sometimes be fit nearly as well by a linear as an exponential curve. The choice of the constraint on "d" was selected to be slightly lower than the observed best-fit value of "d" (0.006) when data from all lead acetate AUC dose-response curves from all of the different studies in this program were used. This approach may tend to underestimate relative bioavailability slightly in some studies (especially at low dose), but use of the information gained from all studies is judged to be more robust than basing fits solely on the data from one study. In general, one of these models (the linear, the exponential, or the combination) usually yielded a fit (as judged by the value of the adjusted correlation coefficient R² and by visual inspection of the fit of the line through the measured data points) that was clearly superior to the others. If two or more models fit the data approximately equally well, then the simplest model (that with the fewest parameters) was selected. #### **Outlier Identification** During the dose-response curve fitting process, all data were carefully reviewed to identify any anomalous values. Typically, the process used to identify outliers was as follows: - Step 1 Any data points judged to be outliers based on information derived from analysis of data across multiple studies (as opposed to conclusions drawn from within the study) were excluded. - Step 2 The remaining raw data points were fit to the equation judged to be the most likely to be the best fit (linear, exponential, or mixed). Table Curve 2-D was then used to plot the 95% prediction limits around the best fit line. All data points that fell outside the 95% prediction limits were considered to be outliers and were excluded. - Step 3 After excluding these points (if any), a new best-fit was obtained. In some cases, data points originally inside the 95% prediction limits were now outside the limits. However, further iterative cycles of data point exclusion were not performed, and the fit was considered final. It should be noted that professional judgment can be imposed during any stage of the above outlier identification process. In this study, one additional data point was determined to be an outlier and excluded from analysis. #### Curve Fit Results Table A-8 lists the data used to fit these curves, indicating which endpoints were excluded as outliers and why. Table A-9 shows the type of equation selected to fit each data set, and the best fit parameters. The resulting best-fit equations for the data sets are shown in Figures A-5 to A-16. Values excluded as outliers are represented in the figures by the symbol "+". #### 4.0 RESULTS -- CALCULATED RBA VALUES The value of RBA for a test substance was calculated for a series of doses using the following procedure: - 1. For each dose, calculate the expected response to test material, using the best fit equation through the dose-response data for that material. - 2. For each expected response to test material, calculate the dose of lead acetate that is expected to yield an equivalent response. This is done by "inverting" the dose-response curve for lead acetate, solving for the dose that corresponds to a specified response. - 3. Calculate RBA at that dose as the ratio of the dose of lead acetate to the dose of test material. For the situation where both curves are linear, the value of RBA is the ratio of the slopes (the "b" parameters). In the case where both curves are exponential and where both curves have the same values for parameters "a" and "c", the value of RBA is equal to the ratio of the "d" parameters. The results are summarized in Table A-10. # 5.0 QUALITY ASSURANCE DATA A number of steps were taken throughout this study and the other studies in this project to ensure the quality of the results, including 5% duplicates, 5% standards, a program of interlaboratory comparison. These steps are detailed below. #### **Duplicates** Duplicate samples were prepared and analyzed for about 5% of all samples generated during the study. Table A-11 lists the first and second values for blood, liver, kidney, and bone. The results are shown in Figure 3-1 in the main text. #### **Standards** The Centers for Disease Control and Prevention (CDCP) provides a variety of blood lead "check samples" for use in quality assurance programs for blood lead studies. Each time a group of blood samples was prepared and sent to the laboratory for analysis, several CDCP check samples of different concentrations were included. Table A-12 lists the concentrations reported by the laboratory compared to the nominal concentrations indicated by CDCP for the samples submitted during this study, and the results are plotted in Figure 3-2 in the main text. # Interlaboratory Comparison An interlaboratory comparison of blood lead analytical results was performed by sending a set of 15 randomly selected whole blood samples from this study to CDCP for independent analysis. The data are presented in Table A-13, and the results are plotted in Figure 3-3 in the main text. TABLE A-1 BODY WEIGHTS AND ADMINISTERED DOSES, BY DAY Body weights were measured on days -1, 2, 5, 8, 11, 14. Weights for other days are estimated, based on linear interpolation between measured values. | Group | IĎ# | | | | Day 0 | | | | | | | | | | | , . | | |--------|------------|---------------|------------|--------------|------------------|--------------|--------------------|----------------|------------------|--------------|------------------|----------------|-----------------------|----------------|------------------|--------------|------------------------------| | Group | 10. | | ay -1 | | ug Pb/day | | Day 1
ug Pb/day | | ay 2 | | ay 3 | | Day 4
j) ug Pb/day | | ay 5 | | D ay 6
) ug Pb/day | | 1 | 907 | 11.56 | 0.0 | 12.1 | 1449.7 | 12.6 | 1449.7 | 13.12 | 1449.7 | 13.7 | 1604.3 | 14.3 | 1604.3 | 14.84 | 1604.3 | 15.3 | 1904.3 | | i | 912 | 14.8 | 0.0 | 15.3 | 1449.7 | 15.7 | 1449.7 | 16.22 | 1449.7 | 16.8 | 1604.3 | 17.4 | 1604.3 | 17.94 | 1604.3 | 18.3 | 1904.3 | | 1 | 919 | 12.82 | 0.0 | 13.3 | 1449.7 | 13.7 | 1449.7 | 14.2 | 1449.7 | 14.6 | 1604.3 | 14.9 | 1604.3 | 15.32 | 1604.3 | 15.7 | 1904.3 | | 1 . | 930 | 12.52 | 0.0 | 13.1 | 1449.7 | 13.6 | 1449.7 | 14.12 | 1449.7 | 14.6 | 1604.3 | 15.1 | 1604.3 | 15.62 | 1604.3 | 16.2 | 1904.3 | | 1 | 942 | 14.06 | 0.0 | 14.5 | 1449.7 | 15.0 | 1449.7 | 15.46 | 1449.7 | 16.1 | 1604.3 | 16.8 | 1604.3 | 17.4 | 1604.3 | 17.8 | 1904.3 | | 1 | 943 | 15.14 | 0.0 | 15.7 | 1449.7 | 16.2 | 1449.7 | 16.76 | 1449.7 | 17.3 | 1604.3 | 17.8 | 1604.3 | 18.26 | 1604.3 | 18.9 | 1904.3 | | 1 | 953 | 13.58 | 0.0 | 14.2 | 1449.7 | 14.8 | 1449.7 | 15.42 | 1449.7 | 15.9 | 1604.3 | 16.3 | 1604.3 | 16.8 | 1604.3 | 17.4 | 1904.3 | | 2 | 901 | 15.08 | 0.0 | 15.3 | 0.0 | 15.6 | 0.0 | 15.86 | 0.0 | 16.7 | 0.0 | 17.5 | 0.0 | 18.34 | 0.0 | 18.9 | 0.0 | | 2 | 902 | 16.26 | 0.0 | 16.6 | 0.0 | 17.0 | 0.0 | 17.42 | 0.0 | 18.3 | 0.0 | 19.1 | 0.0 | 19.96 | 0.0 | 20.6 | 0.0 | | 2
2 | 920
925 | 15.92
16.9 | 0.0
0.0 | 16.5
17.4 | 0.0
0.0 | 17.0 | 0.0 | 17.52 | 0.0 | 18.3 | 0.0 | 19.1 | 0.0 | 19.86 | 0.0 | 20.1 | 0.0 | | 2 | 928 | 14.1 | 0.0 | 14.5 | 0.0 | 17.8
14.9 | 0.0
0.0 | 18.32
15.32 | 0.0 | 18.7 | 0.0 | 19.1 | 0.0 | 19.5 | 0.0 | 20.1 | . 0.0 | | 3 | 905 | 16,78 | 0.0 | 17.3 | 385.4 | 17.9 | 385.4 | 18.46 | 0.0
385.4 | 15.6
18.9 | 0.0
422.3 | 15.8
19.3 | 0.0
422.3 | 16.1
19.76 |
0.0
422.3 | 16.8 | 0.0 | | 3 | 909 | 14.72 | 0.0 | 15.2 | 289.1 | 15.7 | 385.4 | 16.22 | 385.4 | 16.7 | 422.3 | 17.3 | 422.3
422.3 | 17.78 | 422.3 | 20.3 | 464.3 | | 3 | 927 | 14.48 | 0.0 | 15.0 | 385.4 | 15.5 | 385.4 | 16.02 | 385.4 | 16.5 | 422.3 | 17.1 | 422.3
422.3 | 17.6 | 422.3 | 18.5 | 464.3 | | 3 | 931 | 12.76 | 0.0 | 13.2 | 385.4 | 13.7 | 385.4 | 14.2 | 385.4 | 15.0 | 422.3 | 15.9 | 422.3
422.3 | 16.7 | 422.3
422.3 | 18.2
17.1 | 464.3
464.3 | | 3 | 940 | 13.34 | 0.0 | 13.7 | 385.4 | 14.2 | 385.4 | 14.56 | 385.4 | 15.0 | 422.3 | 15.5 | 422.3 | 16.02 | 422.3 | 16.5 | 464.3 | | 4 | 923 | 11.14 | 0.0 | 11.4 | 1087.8 | 11.6 | 1087.8 | 11.8 | 1087.8 | 12.3 | 1181.4 | 12.9 | 1181.4 | 13.4 | 1181.4 | 14.1 | 1298.7 | | 4 | 933 | 14.16 | 0.0 | 14.6 | 1087.8 | 15.1 | 1087.8 | 15.58 | 1087.8 | 16.2 | 1181.4 | 16.9 | 1181.4 | 17.56 | 1181.4 | 18.0 | 974.0 | | 4 | 948 | 14.4 | 0.0 | 14.9 | 1087.8 | 15.4 | 1087.8 | 15.94 | 1087.8 | 16.3 | 1181.4 | 16.6 | 1181.4 | 16.96 | 1181.4 | 17.5 | 1298.7 | | 4 | 950 | 14.56 | 0.0 | 15.1 | 1087.8 | 15.7 | 1087.8 | 16.3 | 1087.8 | 16.8 | 1181.4 | 17.3 | 1181.4 | 17.82 | 1181.4 | 18.4 | 1298.7 | | 4 | 956 | 13.26 | 0.0 | 13.6 | 1087.8 | 13.8 | 1087.8 | 14.14 | 1087.8 | 14.7 | 1181.4 | 15.3 | 1181.4 | 15.84 | 1181.4 | 16.5 | 1298.7 | | 5 | 911 | 12.55 | 0.0 | 13.0 | 366.1 | 13.3 | 366.1 | 13.74 | 366.1 | 14.2 | 398.3 | 14.8 | 398.3 | 15.26 | 398.3 | 15.7 | 435.8 | | 5 | 929 | 12.28 | 0.0 | 12.9 | 366.1 | 13.5 | , 366.1 | 14.04 | 366.1 | 14.5 | 398.3 | 15.1 | 398.3 | 15.56 | 398.3 | 16.2 | 435.8 | | 5 | 934 | 15.38 | 0.0 | 15.7 | 366.1 | 16.1 | 366.1 | 16.4 | 366.1 | 16.7 | 398.3 | 17.0 | 398.3 | 17.26 | 398.3 | 17.8 | 435.8 | | 5
5 | 947 | 14.24 | 0.0 | 14.7 | 366.1 | 15.2 | 366.1 | 15.62 | 366.1 | 16.3 | 398.3 | 17.0 | 398.3 | 17.7 | 398.3 | 18.4 | 435.8 | | 6 | 954
903 | 13.76
16.3 | 0.0 | 16.8 | 366.1
1218.0 | 14.5
17.3 | 366.1 | 14.86 | 366.1 | 15.4 | 398.3 | 15.9 | 398.3 | 15.38 | 398.3 | 17.1 | 435.8 | | 6 | 910 | 15.9 | 0.0 | 16.3 | 1218.0 | 17.3 | 1218.0
1218.0 | 17.78
17.06 | 1218.0 | 18.3 | 1307.4 | 18.8 | 1307.4 | 19.38 | 1307.4 | 20.1 | 1435.2 | | 6 | 938 | 14.34 | 0.0 | 14.5 | 1218.0 | 14.7 | 1218.0 | 14.82 | 1218.0
1218.0 | 17.8
15.4 | 1307.4
1307.4 | 18.6
15.9 | 1307.4
1307.4 | 19.36
16.48 | 1307.4
1307.4 | 19.9 | 1435.2 | | 6 | 951 | 14.52 | 0.0 | 14.9 | 1218.0 | 15.2 | 1218.0 | 15.55 | 1218.0 | 16.0 | 1307.4 | 16.4 | 1307.4 | 16.86 | 980.6 | 16.8 | 1435.2
1435.2 | | 5 | 955 | 15.14 | 0.0 | 15.7 | 1218.0 | 16.3 | 1218.0 | 16.94 | 1218.0 | 17.5 | 1307.4 | 18.0 | 1307.4 | 18.6 | 1307.4 | 17.4
19.3 | | | 7 | 906 | 15.46 | 0.0 | 15.9 | 3400.2 | 16.4 | 3400.2 | 16.86 | 3400.2 | 17.2 | 3651.3 | 17.5 | 3651.3 | 17.84 | 3651.3 | 18.5 | 1435.2
3862.8 | | 7 | 908 | 13.52 | 0.0 | 13.7 | 3400 2 | 13.9 | 3400.2 | 14.12 | 3400.2 | 14.3 | 3651.3 | 14.5 | 3651.3 | 14.66 | 3651.3 | 15.5 | 3862.8 | | 7 | 916 | 12.84 | 0.0 | 13.3 | 3400.2 | 13.7 | 3400.2 | 14.18 | 3400.2 | 14.5 | 3651.3 | 14.8 | 36513 | 15.08 | 3651.3 | 15.7 | 3862.8 | | 7 | 918 | 13.22 | 0.0 | 13.5 | 3400.2 | 13.8 | 3400.2 | 14.16 | 3400.2 | 14.5 | 3651.3 | 14.9 | 3651.3 | 15.24 | 3651.3 | 15.9 | 3862.8 | | . 7 | 922 | 15.52 | 0.0 | 16.0 | 3400.2 | 16.4 | 3400.2 | 16.82 | 3400.2 | 17.2 | 3651.3 | 17.6 | 3651.3 | 18.02 | 3651.3 | 18.8 | 3862.8 | | 8 | 913 | 11.32 | 0.0 | 11.4 | 347.5 | 11.5 | 347.5 | 11.58 | 347.5 | 11.9 | 377.2 | 12.2 | 377.2 | 12.5 | 377.2 | 13.1 | 413.3 | | 8 | 914 | 12.6 | 0.0 | 13.1 | 347.5 | 13.5 | 347.5 | 14.02 | 347.5 | 14.5 | 377.2 | 15.0 | 377.2 | 15.56 | 377.2 | 16.0 | 413.3 | | 8 | 932 | 14.6 | 0.0 | 14.9 | 347.5 | 15.1 | 347.5 | 15.42 | 347.5 | 16.1 | 377.2 | 16.8 | 377.2 | 17.52 | 377.2 | 18.2 | 413.3 | | 8
A | 937 | 14.04 | 0.0 | 14.6 | 347.5 | 15.2 | 347.5 | 15.8 | 347.5 | 16.3 | 377.2 | 16.7 | 377.2 | 17.16 | 377.2 | 17.7 | 413.3 | | 9 | 946
924 | 11.94 | 0.0 | 12.5 | 347.5 | 13.1 | 347.5 | 13.62 | 347.5 | 14.1 | 377.2 | 14.5 | 377.2 | 14.92 | 377.2 | 15.5 | 413.3 | | 9 | 924 | 13.68
11.7 | 0.0 | 14.2
12.2 | 1100.4 | 14.7 | 1100.4 | 15.28 | 1100.4 | 15.9 | 1192.2 | 16.4 | 1192.2 | 17.02 | 1192.2 | 17.7 | 1310.1 | | 9 | 944 | 11.7 | 0.0 | 15.5 | 1100.4
1100.4 | 12.6
16.1 | 1100.4
1100.4 | 13.08 | 1100.4 | 13.6 | 1192.2 | 14.2 | 1192.2 | 14.72 | 1192.2 | 15.1 | 1310.1 | | 9 | 949 | 14.3 | 0.0 | 14.4 | 1100.4 | 14.5 | 1100.4 | 16.82
14.62 | 1100.4 | 17.2
15.2 | 1192.2 | 17.7 | 1192.2 | 18.1 | 1192.2 | 18.9 | 1310.1 | | 9 | 957 | 13.9 | 0.0 | 14.2 | 1100.4 | 14.4 | 1100.4 | 14.68 | 1100.4 | 15.2 | 1192.2 | 15.8
15.7 | 1192.2
1192.2 | 16.32
16.18 | 1192.2
1192.2 | 16.8
16.9 | 1310.1
1310.1 | | 10 | 917 | 12.16 | 0.0 | 12.4 | 3411.0 | 12.7 | 3411.0 | 12.92 | 3411.0 | 13.3 | 3619.8 | 13.7 | 3619.8 | 14.02 | 3619.8 | 14.5 | 3978.9 | | 10 | 921 | 14.85 | 0.0 | 14.8 | 1705.5 | 14.8 | 3411.0 | 14.7 | 3411.0 | 15.3 | 3619.8 | 15.9 | 3619.8 | 16.48 | 3619.8 | 17.0 | 3978.9 | | 10 | 939 | 16.36 | 0.0 | 16.8 | 3411.0 | 17.3 | 3411.0 | 17.72 | 3411.0 | 18,2 | 3619.8 | 18.7 | 3619.8 | 19.12 | 3619.8 | 19.9 | 3978.9 | | 10 | 941 | 14.7 | 0.0 | 15.1 | 3411.0 | 15.6 | 3411.0 | 15.02 | 3411.0 | 16.8 | 3619.8 | 17.5 | 3619.8 | 18.24 | 3619.8 | 18.8 | 3978.9 | | 10 | 945 | 12.72 | 0.0 | 13.2 | 3411.0 | 13.6 | 3411.0 | 14.08 | 3411.0 | 14.6 | 3619.8 | 15.1 | 3619.8 | 15.56 | 3619.8 | 16.0 | 3978.9 | | _ :- | - :-] | | | ,,,, | 3411.0 | 14.0 | 3711.0 | 17.00 | J-11.0 | 14.0 | 3015.0 | 1 2 . 1 | 3019.0 | 10.00 | 3018.0 | 10.0 | 35/6.5 | Shaded boxes show days in which administered doses were ingested late Days which required adjustment for missed or partially missed doses Day 0 Day 5 Pig 909 - Dropped most of one doughball. Daily dose adjusted to 75% Pig 921 - Did not eat one doughball. Daily dose adjusted to 50% Pig 951 - Ate 1/2 of one doughball, dropped the rest through cage bottom. Daily dose adjusted to 75%. Day 6 Pig 933 - Vomit found after one dosing. Daily dose adjusted to 75% Day 8 Pig 933 - Vomitted AM doughball. Dose was treated as missed. Daily dose adjusted to 50% Pig 946 - Possibly vomitted one dose. Daily dose adjusted to 75% Day 9 Pig 941 - Portion of one dose fell on floor. Daily dose adjusted to 75% Pig 945 - Portion of one dose fell on floor. Daily dose adjusted to 75% TABLE A-1 (cont.) | | av 7 | | ay 8 | E | ay 9 | Da | ry 10 | Da | y 11 | D | y 12 | Ū. | ay 13 | Di | y 14 | Da | y 15 | |--------------|------------------|----------------|------------------|--------------|------------------|--------------|------------------|---------------|------------------|--------------|------------------|--------------|------------------|---------------|------------------|--------------|-----------| | | ug Pb/day | | | | ug Pb/day | | ug Pb/day | | | | ug Pb/day | | ug Pb/day | | ug Pb/day | BW (kg) | ug Pb/day | | 15.7 | 1904.3 | 16.18 | 1904.3 | 16.5 | 2084.6 | 16.8 | 2084.6 | 17.18 | 2084.6 | 17.8 | 2305.1 | 18.5 | 2305.1 | 19.12 | 2305.1 | 19.8 | 0.0 | | 18.6 | 1904.3 | 19 | 1904.3 | 19.6 | 2084.6 | 20.2 | 2084.6 | 20.82 | 2084.6 | 21.3 | 2305.1 | 21.8 | 2305.1 | 22.3 | 2305.1 | 22.8 | 0.0 | | 16.0 | 1904.3 | 16.38 | 1904.3 | 17.0 | 2084.6 | 17.6 | 2084.6 | 18.14 | 2084.6 | 18.9 | 2305.1 | 19.6 | 2305.1 | 20.34 | 2305, 1 | 21.1 | 0.0 | | 16.7 | 1904.3 | 17.28 | 1904.3 | 18.1 | 2084.6 | 19.0 | 2084.6 | 19.82 | 2084.6 | 20.7 | 2305.1 | 21.5 | 2305.1 | 22.32 | 2305.1 | 23.2 | 0.0 | | 18.3 | 1904.3 | 18.72 | 1904.3 | 19.3 | 2084.6 | 19.9 | 2084.6 | 20.46 | 2084.6 | 21.1 | 2305.1 | 21.8 | 2305.1 | 22.5 | 2305.1 | 23.2 | 0.0 | | 19.5 | 1904.3 | 20.16 | 1904.3 | 20.9 | 2084.6 | 21.5 | 2084.6 | 22.24 | 2084.6 | 23.0 | 2305.1 | 23.8 | 2305.1 | 24.52 | 2305.1 | 25.3 | 0.0 | | 18.0 | 1904.3 | 18.58 | 1904.3 | 19.1 | 2084.6 | 19.7 | 2084.6 | 20.26 | 2084.6 | 21.3 | 2305.1 | 22.3 | 2305.1 | 23.26 | 2305.1 | 24.3 | 0.0 | | 19.4 | 0.0 | 19.96 | 0,0 | 20.3 | 0.0 | 20.6 | 0.0 | 20.92 | 0.0 | 22.1 | 0.0 | 23.3 | 0.0 | 24.52 | 0.0 | 25.7 | 0.0 | | 21.2 | 0.0 | 21.76 | 0.0 | 22.4 | 0.0 | 23.1 | 0.0 | 23.78 | 0.0 | 24.6 | 0.0 | 25.5 | 0.0 | 26.3 | 0.0 | 27.1 | 0.0 | | 20.2 | 0.0 | 20.44 | 0.0 | 21.0 | 0.0 | 21.5 | 0.0 | 22.1 | 0.0 | 23.0 | 0.0 | 23.9 | 0.0 | 24.8 | 0.0 | 25.7 | 0.0 | | 20.7 | 0.0 | 21.24 | 0.0 | 21.9 | 0.0 | 22.7 | 0.0 | 23.36 | 0.0 | 24.2 | 0.0 | 25.0 | 0.0 | 25.88 | 0.0 | 26.7 | 0.0 | | 17.5 | 0.0 | 18.18 | 0.0 | 18.5 | 0.0 | 18.9 | 0.0 | 19.28 | 0.0 | 20.3 | 0.0 | 21.3 | 0.0 | 22.3 | 0.0 | 23.3 | 0.0 | | 20.8 | 464.3 | 21.26 | 464.3 | 21.8 | 506.3 | 22.4 | 506.3 | 22.92 | 505.3 | 23.8 | 551.4 | 24.7 | 551.4 | 25.64 | 551.4 | 26.5 | 0.0 | | 19.3 | 464.3 | 20.04 | 464.3 | 20.6 | 506.3 | 21.1 | 506.3 | 21.62 | 506.3 | 22.4 | 551.4 | 23.1 | 551.4 | 23.82 | 551.4 | 24.6 | 0.0 | | 18.9 | 464.3 | 19.5 | 464.3 | 20.2 | 506.3 | 20.8 | 506.3 | 21.46 | 506.3 | 22.2 | 551.4 | 23.0 | 551.4 | 23.76 | 551.4 | 24.5 | 0.0 | | 17.5 | 464.3 | 17.88 | 464.3 | 18.6 | .506.3 | 19.3 | 506.3 | 19.98 | 506.3 | 20.8 | 551.4 | 21.6 | 551.4 | 22.36 | 551.4 | 23.2 | 0.0 | | 17.1 | 464.3 | 17.58 | 464.3 | 18.2 | 505.3 | 18.7 | 506.3 | 19.3 | 506.3 | 19.8 | 551.4 | 20.3 | 551.4 | 20.8 | 551.4 | 21.3 | 0.0 | | 14.8 | 1298.7 | 15.44 | 1298.7 | 16.2 | 1430.1 | 16.9 | 1430.1 | 17.64 | 1430.1 | 18.2 | 1581.3 | 18.8 | 1581.3 | 19.32 | 1581.3 | 19.9 | 0.0 | | 18.5 | 1298.7 | 18.98 | 649 4 | 19.4 | 1430.1 | 19.9 | 1430.1 | 20.32 | 1430.1 | 20.6 | 1581.3 | 21.0 | 1581.3 | 21.3 | 1581.3 | 21.6 | 0.0 | | 18.0 | 1298.7 | 18.58 | 1298.7 | 19.1 | 1430.1 | 19.6 | 1430.1 | 20.1 | 1430.1 | 20.7 | 1581.3 | 21.3 | 1581.3 | 21.92 | 1581.3 | 22.5 | 0.0 | | 19.0 | 1298.7 | 19.62 | 1298.7 | 20.3 | 1430,1 | 21.1 | 1430.1 | 21.78 | 1430.1 | 22.3 | 1581.3 | 22.8 | 1581.3 | 23.24 | 1581.3 | 23.7 | 0.0 | | 17.1 | 1298.7 | 17.72 | 1298.7 | 18.7 | 1430.1 | 19.6 | 1430.1 | 20.58 | 1430.1 | 21.0 | 1581.3 | 21,4 | 1581.3 | 21.76 | 1581.3 | 22.2 | 0.0 | | 16.2 | 435.8 | 16.62 | 435.8 | 17.3 | 481.5 | 18.0 | 481.5 | 18.7 | 481.5 | 18.7 |
526.0 | 18.8 | 526.0 | 18.82 | 526.0 | 18.9 | 0.0 | | 16.9 | 435.8 | 17.54 | 435.8 | 18.4 | 481.5 | 19.3 | 481.5 | 20.16 | 481.5 | 20.4 | 526.0 | 20.7 | 526.0 | 20.98 | 526.0 | 21.3 | 0.0 | | 18.3 | 435.8 | 18.82 | 435.8 | 19.1 | 481.5 | 19.4 | 481.5 | 19.66 | 481.5 | 19.9 | 526.0 | 20.2 | 526.0 | 20.42 | 526.0 | 20.7 | 0.0 | | 19.1 | 435.8 | 19.82 | 435.8 | 20.3 | 481.5 | 20.8 | 481.5 | 21.32 | 461.5 | 21.7 | 526.0 | 22.1 | 526.0 | 22.42 | 526.0 | 22.8 | 0.0 | | 17.8 | 435.8 | 18.5 | 435.8 | 19.1 | 481.5 | 19.7 | 481.5 | 20.36 | 481.5 | 21.1 | 526.0 | 21.8 | 526.0 | 22.5 | 526.0 | 23.2 | 0.0 | | 20.9 | 1435.2 | 21.66 | 1435.2 | 22.2 | 1563.6 | 22.7 | 1563.6 | 23.16 | 1563.6 | 23.9 | 1693.8 | 24.6 | 1693.8 | 25.26 | 1693.8 | 26.0 | 0.0 | | 20.4 | 1435.2 | 20.92 | 1435.2 | 21.6 | 1563.6 | 22.3 | 1563.6 | 23.06 | 1563.6 | 23.6 | 1693.8 | 24.1 | 1693.8 | 24.62 | 1693.8 | 25.1 | 0.0 | | 17.2 | 1435.2 | 17.54 | 1435.2 | 18.1 | 1563.6 | 18.7 | 1563.6 | 19.3 | 1563.6 | 20.0 | 1693.8 | 20.6 | 1693.8 | 21.28 | 1693.8 | 21.9 | 0.0 | | 17.9 | 1435.2 | 18.44 | 1435.2 | 19.0 | 1563.6 | 19.5 | 1563.6 | 20.08 | 1563.6 | 20.6 | 1693.8 | 21.2 | 1693.8 | 21.76 | 1693.8 | 22.3 | 0.0 | | 20.0 | 1435.2 | 20.68 | 1435.2 | 21.2 | 1563.6 | 21.8 | 1563.6 | 22.32 | 1563.6 | 23.0 | 1893.8 | 23.6 | 1693.8 | 24.3 | 1693.8 | 25.0 | 0.0 | | 19.2 | 3862.8 | 19.86 | 3862.8 | 20.3 | 4339.8 | 20.7 | 4339.8 | 21.06 | 4339.8 | 22.1 | 4701.6 | 23.0 | 4701.6 | 24.04 | 4701.6 | 25.0 | 0.0 | | 16.2 | 3862.8 | 17.04 | 3862.8 | 17.5 | 4339.8 | 18.0 | 4339.8 | 18.48 | 4339.8 | 19.3 | 4701.6 | 20.0 | 4701.6 | 20.8 | 4701.6 | 21.6 | 0.0 | | 16.3 | 3862.8 | 16.94
17.18 | 3862.8 | 17.6
17.6 | 4339.8 | 18.3
17.9 | 4339.8
4339.8 | 19.02 | 4339.8
4339.8 | 19.7 | 4701.5 | 20.4
19.3 | 4701.6 | 21.04 | 4701.6
4701.6 | 21.7
20.3 | 0.0 | | 16.5
19.6 | 3862.8
3862.8 | 20.42 | 3562.8
3862.8 | 21.1 | 4339.8
4339.8 | 21.9 | 4339.8
4339.8 | 18.32
22.6 | 4339.8
4339.8 | 18.8
23.5 | 4701.6
4701.6 | 19.3
24.3 | 4701.6
4701.6 | 19.8
25.16 | 4701.6
4701.6 | 26.0 | 0.0 | | 13.7 | 413.3 | 14.24 | 413.3 | 15.0 | 454.0 | 15.8 | 454.0 | 16.58 | 454.0 | 17.1 | 502.1 | 17.6 | 502.1 | 18.08 | 502.1 | 18.6 | 0.0 | | 15.7 | 413.3 | 16.84 | 413.3 | 17.3 | 454.0
454.0 | 17.7 | 454.0 | 18.16 | 454.0
454.0 | 17.1 | 502.1
502.1 | 17.6 | 502.1 | 20.16 | 502.1
502.1 | 20.8 | 0.0 | | 18.8 | 413.3 | 19.5 | 413.3 | 20.2 | 454.0 | 21.0 | 454.0 | 21.74 | 454.0 | 22.3 | 502.1 | 22.8 | 502.1 | 23.32 | 502.1 | 23.8 | 0.0 | | 18.2 | 413.3 | 18.66 | 413.3 | 19.3 | 454.0 | 19.9 | 454.0 | 20.52 | 454.0 | 21.1 | 502.1
502.1 | 21.7 | 502.1 | 23.32 | 502.1 | 23.8 | 0.0 | | 16.0 | 413.3 | 16.56 | 310.0 | 17.2 | 454.0 | 17.8 | 454.0 | 18.42 | 454.0 | 19.2 | 502.1 | 19.9 | 502.1 | 20.62 | 502.1 | 21.4 | 0.0 | | 18.4 | 1310.1 | 19.02 | 1310.0 | 19.5 | 1447.2 | 20.0 | 1447.2 | 20.54 | 1447.2 | 21.3 | 1558.8 | 22.0 | 1558.8 | 22.8 | 1558.8 | 23.6 | 0.0 | | 15.4 | 1310.1 | 15.72 | 1310.1 | 16.2 | 1447.2 | 16.7 | 1447.2 | 17.14 | 1447.2 | 18.2 | 1558.8 | 19.3 | 1558.8 | 20.38 | 1558.8 | 21.5 | 0.0 | | 19.7 | 1310.1 | 20.46 | 1310.1 | 21.0 | 1447.2 | 21.6 | 1447.2 | 22.2 | 1447.2 | 23.2 | 1558.8 | 24.2 | 1558.8 | 25.26 | 1558.8 | 26.3 | 0.0 | | 17.3 | 1310.1 | 17.82 | 1310.1 | 18.3 | 1447.2 | 18.8 | 1447.2 | 19.24 | 1447.2 | 20.1 | 1558.8 | 20.9 | 1558.8 | 21.78 | 1558.8 | 22.6 | 0.0 | | 17.7 | 1310.1 | 18.46 | 1310.1 | 18.9 | 1447.2 | 19.4 | 1447.2 | 19.8 | 1447.2 | 20.1 | 1558.8 | 21.3 | 1558.8 | 22.08 | 1558.8 | 22.8 | 0.0 | | 15.1 | 3978.9 | 15.6 | 3978.9 | 15.9 | 4362.3 | 16.1 | 4362.3 | 16.36 | 4362.3 | 17.2 | 4680.0 | 18.1 | 4680.0 | 18.9 | 4680.0 | 19.7 | 0.0 | | 17.5 | 3978.9 | 17.98 | 3978.9 | 18.5 | 4362.3 | 18.9 | 4362.3 | 19.4 | 4362.3 | 20.2 | 4680.0 | 21.0 | 4680.0 | 21.78 | 4680.0 | 22.5 | 0.0 | | 20.7 | 3978.9 | 21.56 | 3978.9 | 22.1 | 4362.3 | 22.7 | 4362.3 | 23.2 | 4362.3 | 24.1 | 4680.0 | 25.1 | 4680.0 | 26.04 | 4680.0 | 27.0 | 0.0 | | 19.4 | 3978.9 | 19.96 | 3978.9 | 20.6 | 3271.7 | 21.1 | 4362.3 | 21.74 | 4362.3 | 22.5 | 4680.0 | 23.2 | 4680.0 | 23.92 | 4680.0 | 24.6 | 0.0 | | 1 | | | | | | | | | | 19.0 | | 19.7 | 4680.0 | | 4680.0 | | 0.0 | | 16.4 | 3978.9 | 16.84 | 3978.9 | 17.3 | 3271.7 | 17.8 | 4362.3 | 18.3 | 4362.3 | 18.0 | 4680.0 | 19.7 | - POSS 12 | 20.42 | 4080.0 | 21.1 | U.U | TABLE A-2 Body Weight Adjusted Doses (Dose for Dey/BW for Day) | Group | ID# | Day 0 | Day 1 | Day 2 | Day 3 | Day 4 | Day 5 | Day 6 | Day 7 | Day 8 | Day 9 | Day 10 | Day 11 | Day 12 | Day 13 | Day 14 | Avg Dose | Target Dose | % Target | Avg % | |-------------|------------|----------------|----------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|---|------------------|------------------|------------------|---|------------|-------| | 1 | 907 | 120.009 | 115.057 | 110.497 | 117.158 | 112.450 | 108.106 | 124.572 | 121.035 | 117.894 | 128.236 | 123.738 | 121.337 | 129.309 | 124.782 | 120.582 | 119.50 | 100 | 120 | | | 1 | 912 | 94.918 | 92.065 | 89.376 | 95.531 | 92.377 | 89.425 | 104.097 | 102.125 | 100.228 | 106.320 | 103.129 | 100.124 | 108 155 | 105,708 | 103.370 | 99,13 | 100 | 99 | | | 1 | 919 | 109.165 | 105.511 | 102.093 | 110.084 | 107.334 | 104.718 | 121.496 | 118.820 | 116.257 | 122.883 | 118.758 | 114.916 | 122.138 | 117.589 | 113.331 | 113.67 | 100 | 114 | | | 1 | 930 | 111.061 | 106.701 | 102.871 | 109.732 | 108.104 | 102.707 | 117.742 | 113.847 | 110.202 | 115.000 | 109.868 | 105.175 | 111.611 | 107.282 | 103.277 | 108.87 | 100 | 109 | | | 1 | . 942 | 99.797 | 96.691 | 93.772 | 99.804 | 95.759 | 92.200 | 106.742 | 104.173 | 101.725 | 108.009 | 104.858 | 101.885 | 109.042 | 105.644 | 102.451 | 101.49 | 100 | 101 | | | 1 | 943 | 92,456 | 89.378 | 86.498 | 92.946 | 90.331 | 87.858 | 100.791 | 97.522 | 94.459 | 99.963 | 98.747 | 93.731 | 100.224 | 97.018 | 94.011 | 94.26 | 100 | 94 | | | - 1 | 953 | 102.141 | 97.910 | 94.015 | 101.028 | 98.162 | 95.493 | 109.484 | 105.872 | 102.491 | 108.912 | 105.816 | 102.891 | 108.426 | 103.555 | 99.103 | 102.35 | 100 | 102 | 106 | | 2 2 | 901 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0 | | | | ź | 902
920 | 0.000
0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | • 0 | | | | 2 | 925 | 0.000 | 0.000
0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0 | | | | 2 | 928 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0 | | | | | 905 | 22.226 | 21.531 | | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.00 | 0 | | | | 3 | 909 | 18.991 | 24.517 | 20.878
23.761 | 22.352 | 21.851 | 21.371 | 22.917 | 22.365 | 21.839 | 23.211 | 22.636 | 22.090 | 23.142 | 22.294 | 21.505 | 22.15 | 25 | .89 | | | 3 | 927 | 25.705 | 24.854 | 24.057 | 25.227
25.522 | 24.467 | 23.751 | 25.052 | 24.074 | 23.169 | 24.618 | 24.003 | 23.418 | 24.667 | 23.884 | 23.149 | 23.78 | 26 | 95 | | | 3 | 931 | 29.109 | 26.090 | 27.141 | 28.091 | 24.734
26.616 | 23.994 | 25.464 | 24.610 | 23.810 | 25.122 | 24.334 | 23.593 | 24.808 | 23.981 | 23.207 | 24.52 | 25 | 98 | | | 3 | 940 | 28.036 | 27.230 | 26.470 | 28.066 | 20.010 | 25.287
26.381 | 27.163
28.071 | 26.552 | 25.968 | 27.250 | 26.260 | 25.340 | 26.544 | 25.567 | 24.660 | 26.64 | 25 | 107 | | | | 923 | 95.757 | 93.938 | 92.186 | 95,789 | 91.619 | 88.184 | | 27.216 | 26.411 | 27.890 | 27.038 | 28.233 | 27.848 | 27.163 | 26.510 | 27.18 | 25 | 109 | 99 | | - Z | 933 | 74.337 | 72.008 | 69.820 | 72.748 | 69.905 | 67.278 | 92.237
54.012 | 87.988
70.175 | 84.113
34.212 | 88.423 | 84.588 | 81.071 | 86.885 | 84.291 | 81.848 | 88.61 | 75 | 118 | | | 7 | 948 | 72.941 | 70.514 | 68.243 | 72.568 | 71.083 | 69.658 | 74,211 | 70.175 | | 73.615 | 71.961 | 70.379 | 76.589 | 75.396 | 74.239 | 68.44 | 75 | 91 | | | 7 | 950 | 71,849 | 69.196 | 88.738 | 70.294 | 68.236 | 66.296 | 70.505 | 68.261 | 69,896
66,193 | 74.927
70.310 | 72.989 | 71.149 | 78.367 | 74.193 | 72.140 | 72.19 | 15 | 96 | | | Ä | 956 | 80.261 | 78.580 | 76.931 | 80.331 | 77.351 | 74.583 | 76.868 | 75.977 | 73.290 | 76.585 | 67.906 | 65.661 | 71.016 | 69.498 | 68.042 | 68.67 | 75 | 92 | | | 5 | 911 | 28.263 | 27.430 | 26.645 | 27.957 | 28.997 | 28.101 | 27.734 | 26.957 | 26.221 | 27.811 | 72.865
26.740 | 69.490 | 75.396 | 74.008 | 72.670 | 75.81 | 76 | 101 | 100 | | 5 | 929 | 28.453 | 27.213 | 26.075 | 27.381 | 26.459 | 25.596 | 26.888 | 25.818 | 24.846 | 26.150 | 24.965 | 25.749 | 28.068 | 28.009 | 27.949 | 27.24 | 25 | 109 | | | 5 | 034 | 23.289 | 22.796 | 22.323 | 23.669 | 23.488 | 23.076 | 24.511 | 23.814 | 23,156 | 25.209 | 24.845 | 23.884
24.491 | 25,742
26,414 | 25.402 | 25.071 | 26.00 | 35 | 104 | 1 | | 5 | 947 | 24.905 | 24.149 | 23.438 | 24.416 | 23.420 | 22.503 | 23.676 | 22.801 | 21.988 | 23.696 | 23.127 | 22.584 | 24.255 | 26.063 | 25.759 | 24.21 | 25 | 97 | - | | 5 | 954 | 25.916 | 25.260 | 24.637 | 25.920 | 25.092 | 24.316 | 25.505 | 24.492 | 23.557 | 25.183 | 24.392 | 23.649 | | 23.851 | 23.461 | 23.48 | 25 | 94 | | | 6 | 903 | 72.529 | 70.459 | 68.504 | 71.391 | 89.370 | 87.461 | 71.261 | 68.670 | 88.260 | 70.560 | 69.003 | 67.513 | 24.960
70.989 | 24.143
68.966 | 23.378 | 24.69 | 25 | 99 | 100 | | ě | 910 | 74.785 | 73.051 | 71.395 | 73.340 | 70.316 | 67.531 | 72.193 | 70.353 | 68.604 | 72.277 | 69.970 | 67.606 | 71.832 | 70.282 | 67.055 | 69.33 | 75 | 92 | | | 6 | 938 | 84,000 | 83.083 | 82.188 | 85.043 | 82.069 | 79.333 | 85.250 | 83.507 | 81.824 | 86.260
| 83.555 | 61.016 | 84.880 | 82.144 | 68.798
79,598 | 70.84 | 75 | 94 | | | 6 | 951 | 81.928 | 80.061 | 78.278 | 81.747 | 79.590 | 58,158 | 62.546 | 80.119 | 77.831 | 82.353 | 80.048 | 77.889 | 82.084 | 79,896 | 79.596
77.840 | 82.92 | 76 | 111 | | | 6 | 955 | 77.382 | 74.541 | 71.901 | 74.737 | 72,446 | 70.290 | 74.388 | 71.808 | 69.400 | 73.682 | 71.613 | 70.054 | 73.708 | 71.650 | 69,704 | 76.69
72.50 | 76
75 | 105 | 400 | | 7 | 906 | 213,491 | 207.414 | 201.873 | 212,450 | 208.487 | 204.669 | 208,650 | 201.327 | 194.502 | 214.205 | 210,058 | 206.068 | 213.192 | 204.003 | 195.574 | 208.38 | 225 | 97 | 100 | | 7 | 908 | 247.828 | 244.267 | 240.807 | 255,336 | 252.162 | 249.065 | 249.985 | 237.760 | 226.690 | 247.705 | 241.100 | 234.838 | 244.197 | 234,767 | 226.038 | 2 | | 92 | - 1 | | 7 | 916 | 255.911 | 247.587 | 239,788 | 252.162 | 247.043 | 242.129 | 246.038 | 238.691 | 228.028 | 246.113 | 236.802 | 228.170 | 238.741 | 230.848 | 223,460 | 242.17
239.97 | 225
225 | 108
107 | ľ | | 7 | 918 | 251.246 | 245.561 | 240.127 | 251,467 | 245.383 | 239.587 | 243.147 | 233.637 | 224.843 | 247.141 | 241.906 | 236.669 | 249.908 | 243,522 | 237.455 | 242.12 | 225 | | | | 7 | 922 | 213.134 | 207.498 | 202.152 | 212.038 | 207.225 | 202.625 | 205.250 | 196.881 | 169.167 | 205.224 | 198.408 | 192.027 | 200.466 | 193.428 | 186.868 | 200.83 | 225
225 | 108
89 | 101 | | 8 | 913 | 30.465 | 30.235 | 30.009 | 31.733 | 30.935 | 30.178 | 31.598 | 30.256 | 29.024 | 30.226 | 28,734 | 27.382 | 29,397 | 28.561 | 27.771 | 29.77 | 26 | 119 | 101 | | 8 | 914 | 26.581 | 25.652 | 24.786 | 25.954 | 25.089 | 24.242 | 25.853 | 25.181 | 24.543 | 26.273 | 25.621 | 25.000 | 26.670 | 25.758 | 24.906 | 25.47 | 25 | 102 | | | 8 | 932 | 23.364 | 22.042 | 22.536 | 23.400 | 22.426 | 21.530 | 22.734 | 21.937 | 21.195 | 22.423 | 21.626 | 20.883 | 22.549 | 22.026 | 21.531 | 22.21 | 25 | 89 | | | 8 | 937 | 23.758 | 22.842 | 21.994 | 23.208 | 22.578 | 21.981 | 23.403 | 22.759 | 22.149 | 23,548 | 22.814 | 22.125 | 23.811 | 23.188 | 22.597 | 22.85 | 25 | 91 | | | 8 | 946 | 27.800 | 26.606 | 25.514 | 28.841 | 26.038 | 25.282 | 26.722 | 25.810 | 18.718 | 26.426 | 25.506 | 24.847 | 26.215 | 25.248 | 24.350 | 25.45 | 25 | 102 | 101 | | 9 | 924 | 77.420 | 74.620 | 72.016 | 75.170 | 72.518 | 70.047 | 74.073 | 71.382 | 68.880 | 74.114 | 72.240 | 70,458 | 73.206 | 70.705 | 68.368 | 72.35 | 75 | 96 | 101 | | 9 | 926 | 90.493 | 87.195 | 84.128 | 87.490 | 84.116 | 80.992 | 67.031 | 85.145 | 83.340 | 89.370 | 86.832 | 84.434 | 85.554 | 80.767 | 76.487 | 84.89 | 15 | 113 | ļ | | 9 | 944 | 71.177 | 68.178 | 65.422 | 69.126 | 67.458 | 65.887 | 69.386 | 66.593 | 84.032 | 68.783 | 66.938 | 65.189 | 67.132 | 64.307 | 61.710 | 68.75 | 75 | 89 | ļ | | 9 | 949 | 76.381 | 75.820 | 75.267 | 78.503 | 75.679 | 73.051 | 77.889 | 75.641 | 73.519 | 79.111 | 77.115 | 75.218 | 77.604 | 74.485 | 71.570 | 75.79 | 75 | 101 | - } | | 9 | 957 | 77,712 | 76.311 | 74.959 | 78.538 | 76.033 | 73.684 | 77,338 | 74.017 | 70.970 | 76.544 | 74.778 | 73.091 | 75.817 | 73.114 | 70.598 | 74.90 | 75 | 100 | 100 | | 10 | 917 | 274.785 | 269.269 | 264.009 | 272.439 | 265.122 | 258.188 | 273.527 | 263.969 | 255.058 | 275.166 | 270.838 | 266.644 | 271.988 | 259.232 | 247.619 | 265.86 | | 118 | 100 | | 10 | 921 | 115.185 | 231.202 | 232.041 | 236.691 | 227.851 | 219.648 | 234.329 | 227.628 | 221.296 | 238.396 | 230.484 | 224.861 | 231.836 | 223.140 | 215,074 | 220.51 | 225 | 98 | | | 10 | 939 | 202.875 | 197.548 | 192.494 | 199.036 | 194.056 | 189.320 | 199.610 | 191.785 | 184.550 | 197.330 | 192.568 | 188.030 | 193.816 | 188.504 | 179.724 | 192.62 | 225 | - 66 | | | 10 | 941 | 225.297 | 218.935 | 212.921 | 215.979 | 206.846 | 198.454 | 211.494 | 205.239 | 199.344 | 159.182 | 206.288 | 200.658 | 208.309 | 201.782 | 195.852 | 204.43 | 225 | 91 | | | 10 | 945 | 258.932 | 250.318 | 242.259 | 248.385 | 240.252 | 232.635 | 248.889 | 242.419 | 236.277 | 188.826 | 244.890 | 238.377 | 246.229 | 237.403 | 229.187 | 239.02 | 225 | 106 | 100 | | | | | | | | | | | | | | | | _ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | 2.00.02 | er en | 100 | | (**.**.. TABLE A - 3 RAW AND ADJUSTED BLOOD LEAD DATA | pig number | sample
8-990162 | group | material administered | dosage
100 | qualifier
< | isb result (ug/L) | day
-4 | source file
1951206 | MATRIX
BLOOD | Adjusted Value (ug/dL) ^t
0.5 | |------------|----------------------|--------|------------------------------------|---------------|----------------|-------------------|-----------|------------------------|-----------------|--| | 912 | 8-990165 | i | iv · | 100 | 4 | i | -4 | T951206 | BLOOD | 0.5 | | 919 | 8-990173 | i | īV | 100 | < | i | 4 | T951206 | BLOOD | 0.5 | | 930 | 8-990125 | 1 ' | iV | 100 | < | 1 | -4 | T951206 | BLOCO | 0.5 | | 942 | 8-990142 | 1 | N | 100 | < | 1 | -4 | T951206 | BLOOD | 0.5 | | 943 | 8-990176 | 1 | N | 100 | < | 1 | -4 | T951206 | 8LOOD | 0.5 | | 953 | 8-990170 | 1 | IV . | 100 | < | 1 | -4 | T951206 | BLOOD | 0.5 | | 901 | 8-990143 | 2 | Control | 0 | | 1 | -4 . | T951206 | BLOCO | 0.5 | | 902 | 8-990157 | 2 | Control | 0 | < | 1 | -4 | T951206 | BLOOD | 0.5 | | 920
925 | 8-990140 | 2 | Control | 0 | * | 1 | -4 | T951206 | SLOOD | 0.5 | | 925
928 | 8-990155
8-990137 | 2
2 | Control
Control | 0 | ٠, | 1 | 4 | T951206 | BLOOD | 0.5 | | 905 | 8-990121 | 3 | PbAc | 25 | - 2 | 1 | 4 | T951206
T951206 | BLDGD
BLDGD | 0.5 | | 909 | 8-990131 | 3 | PbAc | 25 | ~ | i | 4 | T951206 | BLOOD | 0.5
0.5 | | 927 | 8-990150 | 3 | PbAc | 25 | < | i | 4 | T951206 | BLOOD | 0.5 | | 931 | 8-990136 | . 3 | PbAc | 25 | < | i | -4 | T951206 | BLOCO . | 0.5 | | 940 | 8-990135 | 3 | PbAc | 25 | < | 1 | 4 | T951206 | BLOOD | 0.5 | | 923 | 8-990156 | 4 | PbAc | 75 | < | 1 | -4 | T951206 | 8L000 | 0.5 | | 933 | 8-990172 | 4 | PbAc | 75 | < | 1 | -4 | T951206 | 81.000 | . 0.5 | | 948 | 8-990132 | 4 | PbAc | 75 | < | 1 | -4 | T951206 | BLOOD | 0.5 | | 950 | 8-990158 | 4 | PbAc | 75 | < | 1 | -4 | T951206 | BLOOD | 0.5 | | 956
911 | 8-990153 | 4
5 | PbAc | 75 | • | 1 | -4 | T951206 | SCOOD | 0.5 | | 929 | 8-990144
8-990126 | 5 | Paimerton Loc 2
Paimerton Loc 2 | 25
25 | ٠ | 1 | 4 | T951206 | BLOOD | 0.5 | | 934 | 8-990159 | 5 | Paimenton Loc 2 | 25 | - 2 | i | 4 | T951206
T951206 | BLOCO
BLOCO | 0.5 | | 947 | 8-990128 | 5 | Palmerton Loc 2 | 25 | ě. | į | 4 | T951206 | BLOOD | 0.5
0.5 | | 954 | 8-990169 | 5 | Palmerton Loc 2 | 25 | € | į | 4 | T951206 | BLOOD | 0.5 | | 903 | 8-990164 | 6 | Palmerton Loc 2 | 75 | • | i | 4 | T951206 | BLOOD | 0.5 | | 910 | 8-990154 | 6 | Palmerton Loc 2 | 75 | < | 1 | -4 | T951206 | BLOOD | 0.5 | | 938 | 8-990168 | 6 | Palmerton Loc 2 | 75 | < | 1 | -4 | T951206 | 8LOOD | 0.6 | | 951 | 8-990134 | 6 | Palmerton Loc 2 | 75 | < | 1 | -4 | T951206 | 8L000 | 0.5 | | 955 | 8-990123 | 6 | Paimerton Loc 2 | 75 | < | 1 | -4 | T951206 | BLOCO | 0.5 | | 906 | 8-990167 | 7 | Palmerton Loc 2 | 225 | < | 1 | -4 | T951206 | BL000 | 0.5 | | 908 | 8-990163 | 7 | Paimerton Loc 2 | 225 | < | 1 | -4 | T951206 | SCOOD | 0.5 | | 916
918 | 8-990127
8-990129 | 7
7 | Paimenton Loc 2 | 225
225 | ۷ ۲ | 1
1 | 4 | T951206 | BLOOD | 0.5 | | 922 | 8-990161 | 7 | Palmerton Loc 2
Palmerton Loc 2 | 225 | | 1 | 4 | T951206
T951208 | BLDOO
BLDOO | 0.5 | | 913 | 8-990124 | à | Palmerton Loc 4 | 25 | ~ | i | 7 | T951206 | 81.000 | 0.5
0.5 | | 914 | 8-990133 | 8 | Paimenton Loc 4 | 25 | ~ | i | 4 | T951206 | 81.000 | 0.5 | | 932 | 8-990146 | 8 | Palmerton Loc 4 | 25 | 4 | i | 4 | T951206 | BL000 | 0.5 | | 937 | 8-990166 | 8 | Palmerton Loc 4 | 25 | < | 1 | -4 | T951206 | BLOCO | 0.5 | | 946 | 8-990122 | 8 | Palmerton Loc 4 | 25 | < | 1 | -4 | T951206 | SLOOD | 0.5 | | 924 | 8-990120 | 9 | Palmerton Loc 4 | 75 | < | 1 | -4 | T951206 | BLOCO | 0.5 | | 926 | 8-990152 | 9 | Palmenton Loc 4 | 75 | < | 1 | -4 | T951206 | #L000 | 0.5 | | 944 | 0-990 140 | 9 | Paimerton Loc 4 | 75 | < | 1 | -4 | T951206 | BLOCO | 0.5 | | 949
957 | 8-990149
8-990130 | 9 | Paimerton Loc 4 | 75 | ٠ | 1 | -4 | T951206 | 81,000 | 0.6 | | 917 | 8-990141 | 10 | Palmerton Loc 4 Palmerton Loc 4 | 75
225 | | 1 | 4 4 | T951206
T951206 | 8LOOD | 0.5 | | 921 | 8-990147 | 10 | Palmerton Loc 4 | 225 | ~ | i | 4 | T951206 | BLOOD
BLOOD | 0.5
0.5 | | 939 | 8-990175 | 10 | Paimerton Loc 4 | 225 | • | 1 | -4 | T951206 | BLOOD | 0.5 | | 941 | 8-990171 | 10 | Palmerton Loc 4 | 225 | < | 1 | -4 | T951206 | BLOCO | 0.5 | | 945 | 8-990138 | 10 . | Palmerton Loc 4 | 225 | < | 1 | 4 | T951206 | BLOOD | 0.5 | | 907 | 8-990226 | 1 | IV | 100 | < | 1 . | 0 | T951206 | BLOCO | 0.5 | | 912 | 8-990189 | 1 | N | 100 | < | 1 | 0 | T951206 | SLOOD | 0.5 | | 919 . | 8-990183 | | IV. | 100 | < | 1 | 0 | T951206 | 81000 | 0.5 | | 930
942 | 8-990204 | 1 | N | 100 | < | 1 | 0 | T951206 | BLOOD | 0.5 | | 943 | 8-990177
8-990211 | | IV | 100
100 | < | 1 | 0 | T951206 | HLOCO | 0.5 | | 953 | 8-990230 | i | IV | 100 | < | 1.3 | . 0 | T951206
T951206 | BLOOD | 1.3
0.5 | | 901 | 8-990197 | 2 | Control | | < | 1 | 0 | T951206 | BL000 | 0.5 | | 902 | 8-990180 | 2 | Control | ō | < | i | ŏ | T951206 | BLCCC | 0.5 | | 920 | 8-990220 | 2 | Control | Ō | < | 1 | ō | T951206 | 81,000 | 0.5 | | 925 | 8-990229 | 2 | Control | 0 | < | 1 | 0 | T951206 | 81.000 | 0.5 | | 928 | 8-990178 | 2 | Control | .0 | < | 1 | 0 | T951206 | BLOOD | 0.5 | | 905 | 8-990184 | 3 | PbAc | 26 | < | . 1 | 0 | T951206 | HLCCO | 0.5 | | 909
927 | 8-990203
8-990196 | 3
3 | PbAc
PbAc | 25 | <
< | 1 | 0 | T951206 | BLOOD | 0.5 | | 931 | 8-990200 | 3 | PbAc | 25
25 | | 1 | 0 | T951206
T951206 | BLOOD
BLOOD | 0.5 | | 940 | 8-990201 | 3 | PbAc | 25 | 3 | 1 | ŏ | T951206 | BLOCO | 0.5
0.5 | | 923 | 8-990221 | 4 | PbAc | 75 | ₹ | i | ŏ | T951206 | BLOOD | 0.5 | | 933 | 8-990224 | 4 | PbAc | 75 | < | i | ŏ | T951206 | SLOOD | 0.5 | | 948 | 8-990210 | 4 |
PbAc | 75 | < | í | ō | T951206 | BLOCO | 0.5 | | 950 | 8-990195 | 4 | PbAc | 75 | <. | 1 | ŏ | T951206 | 84.000 | 0.5 | | 956 | 8-990205 | 4 | PbAc | 75 | < | 1 | 0 | T951206 | BLCCCC | 0.5 | | 911 | 8-990232 | 5 | Palmetton Loc 2 | 25 | < | 1 | 0 | T951206 | SLOOD | 0.5 | | 929 | 8-990222 | 5 | Palmerton Loc 2 | 25 | . < | 1 | 0 | T951206 | BLOOD | 0.5 | | 934 | 8-990212 | 5 | Palmerton Loc 2 | 25 | < | 1 | 0 | T951206 | BLOCO | 0.5 | | 947 | 8-990186 | 5 | Palmerton Loc 2 | 25 | ۲ | 1 | 0 | T951206 | BLOOD | 0.5 | | 954
903 | 8-990209 | 5 | Palmerton Loc 2 | 25
75 | ۲ | 1 | ò | T951206 | BLOOD | 0.5 | | 910 | 8-990225
8-990228 | 6
6 | Palmerton Loc 2
Palmerton Loc 2 | 75
75 | < | 1
1,2 | ٥ | T951206 | BL000 | 0.5 | | 938 | 8-990129 | 6 | Paimenton Loc 2 | 75
75 | ٠. | 1.2 | 0 | T951206
T951206 | BLOCO | 1.2 | | 951 | 8-990193 | 6 | Paimerton Loc 2 | 75
75 | ₹. | i | ö | T951206 | SLOOD | 0.5
0.5 | | 955 | 8-990215 | 6 | Paimerton Loc 2 | 75 | ٠. | i | ŏ | T951206 | 81.000 | 0.5 | | 906 | 8-990219 | 7 | Palmerton Loc 2 | 225 | | 1.3 | č | T951206 | B.000 | 1.3 | | pig aumber | sample | group | material administered | dosage qualifier | inh marris (conf) | . | | | W. Addison distance a resid | |-----------------|----------------------|----------|--------------------------------------|----------------------|-------------------|-----------|--------------------|-----------------|--| | 908 | 8-990213 | 7 | Paimerton Loc 2 | 225 | lab result (ug/L) | day
0 | T951206 | MATRIX
BLOOD | Adjusted Value (ug/dL) ^a
1.8 | | 916 | 8-990191 | 7 | Palmerton Loc 2 | 225 | 1.5 | ō | T951206 | BLOOD | 1.5 | | 918 | 8-990185 | 7 | Palmerton Loc 2 | 225 | 1.1 | 0 | T951206 | BLOOD | 1.1 | | 922
913 | 8-990208
8-990192 | 7
8 | Paimenton Loc 2 | 225 | 1.3 | 0 | T951206 | BLOCO | 1.3 | | 914 | 8-990227 | 8 | Paimerton Loc 4 · Paimerton Loc 4 | 25 <
25 | 1 | 0 | T951206
T951206 | 80000 | 0.5 | | 932 | 8-990214 | 8 | Palmerton Loc 4 | 25 < | i | ŏ | T951206 | BLOOD | 0.5 | | 937 | 8-990216 | 8 | Palmerton Loc 4 | 25 | 1.2 | ŏ | T951206 | BL000 | 1.2 | | 946 | 8-990202 | 8 | Palmerton Loc 4 | 25 < | 1 1 | 0 | T951206 | #L000 | 0.5 | | 924 | 8-990179 | 9 | Paimerton Loc 4 | 75 < | 1 | 0 | T951206 | 8LOOD | 0.5 | | 926
944 | 8-990188
8-990182 | 9
9 | Palmerton Loc 4 | 75 < | 1 | 0 | T951206 | BLOOD | 0.5 | | 949 | 8-990181 | 9 | Palmerton Loc 4 Palmerton Loc 4 | 75 <
75 < | 1 | 0 | T951206 | BL000 | 0.5 | | 957 | 8-990231 | 9 | Paimerton Loc 4 | 75 < | i | 0 | T951206
T951206 | 8L000 | 0.5
0.5 | | 917 | 8-990218 | 10 | Paimerton Loc 4 | 225 < | i | ŏ | T951206 | BLOOD | 0.5 | | 921 | 8-990217 | 10 | Palmerton Loc 4 | 225 < | 1 | 0 | T951206 | BLOOD | 0.5 | | 939 | 8-990190 | 10 | Palmerton Loc 4 | 225 < | 1 | 0 | T951206 | B1'000 | 0.5 | | 941
945 | 8-990207 | 10 | Palmerton Loc 4 | 225 < | 1 | 0 | T951206 | 8LOOD | 0.5 | | 907 | 8-990198
8-990262 | 10 | Paimerton Loc 4 | 225 <
100 | 1 | 0 | T951206 | BFCCC | 0.5 | | 912 | 8-990279 | i | IV | 100 | 12
10.7 | 1 | T951206
T951206 | Broop | 12 | | 919 | 8-990246 | i | īV. | 100 | 9.7 | í | T951206 | BLOOD | 10.7
9.7 | | 930 | 8-990236 | 1 | IV | 100 | 11.1 | 1 | T951206 | 81.000 | 11.1 | | 942 | 8-990289 | 1 | IV . | 100 | 9.2 | 1 | T951206 | BLOOD | 9.2 | | 943 | 8-990247 | 1 | N | 100 | 9.3 | 1 | T951206 | BLOOD | 9.3 | | 953
901 | 8-990241
8-990265 | 1
2 | N
Control | 100 | 9.7 | 1 | T951206 | STOOD | 9.7 | | 902 | 8-990275 | 2 | Control
Control | 0 <
0 < | 1 | 1 | T951206
T951206 | STOOD | 0.5 | | 920 | 8-990268 | 2 | Control | 0 < | 1 | 1 | T951206 | BLOCO | 0.5
0.5 | | 925 | 8-990271 | 2 | Control | 0 < | i | i | T951206 | Brood | 0.5 | | 928 | 8-990235 | 2 | Control | 0 < | 1 | 1 | T951206 | 8LOOD | 0.5 | | 905 | 8-990276 | 3 | PbAc | 25 < | 1 | 1 | T951206 | BLOCO | 0.5 | | 909
927 | 8-990277 | 3 | PbAc | 25 < | 1 | 1 | T951206 | BLOCO | 0.5 | | 927 | 8-990244
8-990255 | 3
3 | PbAc
PbAc | 25
25 | 1.2 | 1 | T951206 | BLOOD | 1.2 | | 940 | 8-990240 | 3 | PbAc | 25
25 < | 1.4
1 | 1 | T951206
T951206 | BLOOD
BLOOD | 1.4
0.5 | | 923 | 8-990284 | 4 | PhAc | 75 < | i | 1 | T951206 | BLOOD | 0.5
0.5 | | 933 | 8-990287 | 4 | PbAc | 75 | 1.7 | 1 | T951206 | BLOOD | 1.7 | | 948 | 8-990285 | 4 | PbAc | 75 | 1.7 | 1 | T951206 | SLOOD | 1.7 | | 950 | 8-990290 | 4 | PbAc | 75 < | 1 | 1 | T951206 | BLOCC | 0.5 | | 956
911 | 8-990252
8-990260 | 5 | PbAc . | 75 | 1.9 | 1 | T951206 | HLOCO | 1.9 | | 929 | 8-990257 | 5 | Paimerton Loc 2
Paimerton Loc 2 | 25
25 < | 1.3
1 | 1
1 | T951206 | BLOOD | 1.3 | | 934 | 8-990270 | 5 | Palmerton Loc 2 | 25 < | 1 | 1 | T951206
T951206 | BLOOD | 0.5
0.5 | | 947 | 8-990239 | 5 | Palmenton Loc 2 | 25 | 1.2 | i | T951206 | BLCCC | 1.2 | | 954 | 8-990281 | 5 | Palmerton Loc 2 | 25 < | 1 | 1 | T951206 | SLOOD | 0.5 | | 903 | 8-990269 | 6 | Paimerton Loc 2 | 75 ≺ | 1 | 1 | T951206 | 81000 | 0.5 | | 910
938 | 8-990238
8-990251 | 6
6 | Palmenton Loc 2 | 75 | 1.7 | 1 | T951206 | BLOCO | 1.7 | | 951 | 8-990256 | 6 | Palmerton Loc 2
Palmerton Loc 2 | ° 75 <
75 | 1 | 1 | T951206 | BLOOD | 0.5 | | 955 | 8-990243 | ě | Palmerton Loc 2 | 75
75 | 3.1
2 | 1 | T951206
T951206 | BLOOD | 3.1
2 | | 906 | 8-990248 | 7 | Paimerton Loc 2 | 225 | 2.2 | i | T951206 | BLOCO | 2.2 | | 908 | 8-990254 | 7 | Palmerton Loc 2 | 225 | 4.4 | i | T951206 | BLOCO | 4.4 | | 916 | 8-990266 | 7 | Palmerton Loc 2 | 225 | 4.2 | 1 | T951206 | BLOOD | . 4.2 | | 918 | 8-990261 | 7 | Palmerton Loc 2 | 225 | 2.2 | 1 | T951206 | SLOOD | 2.2 | | 922
913 | 8-990250
8-990267 | 7
8 | Palmenton Loc 2 Palmenton Loc 4 | 225
25 < | 4 | 1 | T951206 | BLOCO | 4 | | 914 | 8-990274 | B | Paimerton Loc 4 | 25 < | 1 | 1 | T951206
T951206 | BLOOD
BLOOD | 0.5 | | 932 | 8-990263 | 8 | Palmerton Loc 4 | 25 < | i | į | T951206 | SLOOD | 0.5
0.5 | | 937 | 8-990234 | 8 | Palmerton Loc 4 | 26 < | 1 | 1 | T951206 | BLOCO | 0.5 | | 946 | 8-990283 | 8 | Palmerton Loc 4 | 25 < | 1 | 1 | T951206 | BL000 | 0.5 | | 924
926 | 8-990288
8-990242 | 9 | Paimerton Loc 4 | 75 | 1.2 | 1 | T951206 | BLOOD | 1.2 | | 926
944 | 8-990264 | 9 | Palmerton Loc 4 .
Palmerton Loc 4 | 75
75 | 1.2
1 | 1 | T951206 | SLOOD SLOOD | 1.2 | | 949 | 8-990273 | 9 | Palmerton Loc 4 | . 75
· 75 | 1
1.1 | 1 | T951206
T951206 | BLOOD
BLOOD | 1 | | 95 7 | 8-990268 | 9 | Paimenton Loc 4 | 75 < | 1 | i | T951206 | BLOOD | 1.1
0.5 | | 917 | 8-990280 | 10 | Paimerton Loc 4 | 225 | 4.1 | i ' | T951206 | SLOOD | 4.1 | | 921 | 8-990249 | 10 | Palmerton Loc 4 | 225 | 3.9 | 1 | T951206 | BLOOD | 3.9 | | 939
941 | 8-990282
8-990286 | 10
10 | Paimerton Loc 4 Paimerton Loc 4 | 225 | 2.3 | 1 | T951206 | BLOCO | 2.3 | | 945 | 8-990259 | 10 | Paimerton Loc 4 Paimerton Loc 4 | 225
225 | 1.4
2.6 | 1 | T951206
T951206 | BLOOD | 1.4 | | 907 | 8-990326 | 1 | IV | 100 | 13.3 | 2 | T951206 | BLOOD | 13.3 | | 912 | 8-990294 | 1 | IV | 100 | 10.9 | 2 | T951206 | £LDCC | 10.9 | | 919 | 8-990344 | 1 | N | 100 | 12 | 2 | T951206 | BLOOD | 12 | | 930 | 8-990329 | 1 | IV. | 100 | 12.1 | 2 | T951206 | BLOOD | 12.1 | | 942
943 | 8-990305
8-990306 | 1 | IV
IV | 100 | 10.4 | 2 | T951206 | 81000 | 10.4 | | 953 | 8-990318 | 1 | IV
IV | 100
100 | 9.2
12.4 | 2
2 | T951206
T951206 | BLOOD | 9.2
43.4 | | 901 | 8-990299 | ż | Control | ,
0 < | 12.4 | 2 | T951206 | BLOOD | 12.4
0.5 | | 902 | 8-990331 | 2 | Control | 0 < | i | 2 | T951206 | BLOOD | 0.5 | | 920 | 8-990298 | 2 | Control | 0 < | 1 | 2 | T951206 | BLOCO | 0.5 | | 925 | 8-990315 | 2 | Control | 0 < | 1 | 2 | T951206 | #1000 | 0.5 | | 928
905 | 8-990314
8-990335 | 2
3 | Control
PbAc | 0 < | 1 | 2 | T951206 | BLOOD | 0.5 | | 909 | 8-990301 | 3 | PbAc | 25 <
25 | 1 | 2 | T951206
T951206 | BLOOD
BLOOD | 0.5 | | 927 | 8-990333 | 3 | PbAc | 25 < | 1 | 2 | T951206 | BLOOD | 1
0.5 | | 931 | 8-990317 | 3 | PbAc | 25 | 1.1 | 2 | T951206 | 81.000 | 1.1 | | . 940 | 8-990296 | 3 | PbAc | 25 | 1,6 | 2 | T951206 | 81.000 | 1.6 | 4 | | | | | | | | | | , | • | | | | | | | | | | • | | | | | | | | | | • | Page | pig number | sample | group | material administered | dosage | gualifier | lab result (ug/L) | day | source file | massanata s a keessa kasaadta | Adligated Status (contain St |
--|------------|----------|-------|-----------------------|--------|-----------|-------------------|-----|-------------|--|------------------------------| | 200 | 923 | | 4 | | | | | | | MATRIX | Adjusted Value (ug/dL)* | | Pack | | | | | | | 2.2 | | | | _ | | Post | | | - | | | | | | | | 3.2 | | | | | | | | | | | | | | | 200 5-900319 5 Planemon Loc 2 20 1 2 Tristop 10,000 0.5 | | | | | | | | | | | | | Ball | ¥29 | | | | | < | | | | | | | ## 8-80000 | | 8-990319 | 5 | Palmerton Loc 2 | | < | | | | | | | Bill B-90000 | | | | | | < | 1 | | T951206 | | | | Bay | | | | | | | | | | 81,000 | | | Bot | | | | | | | | | | | | | Bell | | | | | | | | | | | | | Second Part | | | | | | | | | | | | | Second Color | | | | Palmenton Loc 2 | | | | | | | | | Bell | | | | | | | 3.7 | | | | | | Section Palmeten Loc 229 | | | | | | | | | | | | | Page | | | | - | | | | | | | | | 913 6-900206 8 Palmerten Loc 4 25 16 2 7791500 RCCCCC 0 6 8 14 8-900206 12 8 Palmerten Loc 4 22 4 1 2 7791500 RCCCCC 0 6 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 | | | | | | | | | | | | | 914 8-900226 8 Palmerina Loc 4 22 1.3 2 TR91208 15,COCO 0.5 1.3 Palmerina Loc 4 22 1.3 2 TR91208 15,COCO 1.3 Palmerina Loc 4 22 1.3 2 TR91208 15,COCO 1.3 Palmerina Loc 4 22 1.3 2 TR91208 15,COCO 1.3 Palmerina Loc 4 22 1.1 2 TR91208 15,COCO 1.2 Palmerina Loc 4 22 1.1 2 TR91208 15,COCO 1.7 Palmerina Loc 4 22 1.1 2 TR91208 15,COCO 1.7 Palmerina Loc 4 22 1.1 2 TR91208 15,COCO 1.7 Palmerina Loc 4 2.7 S 1.1 2 TR91208 15,COCO 1.1 Palmerina Loc 4 2.7 S 1.1 2 TR91208 15,COCO 1.1 Palmerina Loc 4 2.7 S 1.1 2 TR91208 15,COCO 1.1 Palmerina Loc 4 2.7 S | | | | | | | | | | | | | \$522 8-800205 8 Patheristin Loc 4 25 1.3 2 Trib1200 SLCCOD 1.3 1 | | 8-990326 | 8 | Paimenton Loc 4 | | < | | | | | | | Best | | | | | | | | | | | | | Page | | | | | | | | | | #LOO0 | | | Part | | | | | | < | | | | | | | Peter Pete | | | | | | | | | | | | | 899 6-900330 9 Palmenton Loc 4 75 1.7 2 1799/206 SLCCOD 1.7 867 8-960330 19 Palmenton Loc 4 75 1.8 2 1799/206 SLCCOD 1.6 91 6-960330 19 Palmenton Loc 4 225 5.4 2 1799/206 SLCCOD 1.6 91 6-960330 19 Palmenton Loc 4 225 5.4 2 1799/206 SLCCOD 1.6 92 92 92 92 92 92 92 92 92 92 92 92 92 | 944 | | | | | | | | | | | | 867 8-800324 10 Palmenton Loc 4 75 1.8 2 T191208 SLC000 1.8 81.00 1.6 81 1.8 81 1.8 81.00 1.6 81 1.8 81.00 1.6 81 1.8 81 1.8 81.00 1.6 81 1.8 81 1. | | | | | | | | | | | | | ### BARCAND 10 Palmenton Loc 4 225 5.4 2 TH9 1206 BLCOOD 5.4 ### BARCAND 10 Palmenton Loc 4 225 4.9 2 TH9 1206 BLCOOD 4.9 ### BARCAND 10 Palmenton Loc 4 225 4.9 2 TH9 1206 BLCOOD 4.7 ### BARCAND 10 Palmenton Loc 4 225 4.9 2 TH9 1206 BLCOOD 4.7 ### BARCAND 10 Palmenton Loc 4 225 4.9 2 TH9 1206 BLCOOD 4.7 ### BARCAND 10 Palmenton Loc 4 225 4.1 2 TH9 1206 BLCOOD 4.2 ### BARCAND 1 N 100 11.6 3 TH9 1206 BLCOOD 12.6 ### BARCAND 1 N 100 11.8 3 TH9 1206 BLCOOD 12.6 ### BARCAND 1 N 100 11.8 3 TH9 1206 BLCOOD 12.6 ### BARCAND 1 N 100 11.8 3 TH9 1206 BLCOOD 13.5 ### BARCAND 1 N 100 11.8 3 TH9 1206 BLCOOD 13.5 ### BARCAND 1 N 100 11.8 3 TH9 1206 BLCOOD 12.6 ### BARCAND 1 N 100 11.8 3 TH9 1206 BLCOOD 13.5 ### BARCAND 1 N 100 11.8 3 TH9 1206 BLCOOD 12.6 ### BARCAND 1 N 100 11.8 3 TH9 1206 BLCOOD 13.5 ### BARCAND 1 N 100 11.8 3 TH9 1206 BLCOOD 12.6 ### BARCAND 1 N 100 11.8 3 TH9 1206 BLCOOD 12.6 ### BARCAND 1 N 100 11.8 3 TH9 1206 BLCOOD 12.6 ### BARCAND 1 N 100 11.8 3 TH9 1206 BLCOOD 12.6 ### BARCAND 1 N 100 11.8 3 TH9 1206 BLCOOD 13.5 ### BARCAND 1 N 100 11.8 3 TH9 1206 BLCOOD 0.5 ### BARCAND 1 N 100 11.8 3 TH9 1206 BLCOOD 0.5 ### BARCAND 1 N 100 11.8 3 TH9 1206 BLCOOD 0.5 ### BARCAND 1 N 100 11.8 3 TH9 1206 BLCOOD 0.5 ### BARCAND 1 N 100 11.8 3 TH9 1206 BLCOOD 0.5 ### BARCAND 1 N 100 11.8 3 TH9 1206 BLCOOD 0.5 ### BARCAND 1 N 100 11.8 3 TH9 1206 BLCOOD 0.5 ### BARCAND 1 N 100 11.8 3 TH9 1206 BLCOOD 0.5 ### BARCAND 1 N 100 11.8 3 TH9 1206 BLCOOD 0.5 ### BARCAND 1 N 100 11.8 3 TH9 1206 BLCOOD 0.5 | | | | | | | 1.8 | 2 | | | | | 999 8-990000 10 Palmerton Loc 4 225 4.7 2 T81908 8LCOO 4.7 841 6-800318 10 Palmerton Loc 4 225
3.5 2 T81908 8LCOO 3.2 846 6-800320 10 Palmerton Loc 4 225 3.5 2 T81908 8LCOO 3.5 8COO 3.2 847 7-781908 8LCOO 3.5 8COO 3.2 8COO 3.5 8COO 3.2 8COO 3.5 8COO 3.2 8COO 3.5 8 | | | | | | | | | | BLOOD | | | 941 B-800329 10 Palmenton Loc 4 225 3.2 2 TR91008 BLCCCC 3.5 8 COCC 3.5 967 B-800320 10 Palmenton Loc 4 225 3.5 2 TR91008 BLCCCC 3.5 3.5 967 B-800320 10 Palmenton Loc 4 225 3.5 2 TR91008 BLCCCC 3.5 3.5 967 B-800320 10 Palmenton Loc 4 225 3.5 3.5 2 TR91008 BLCCCC 3.5 3 BLCCC | | | | | | | | | | | | | 845 6-800320 10 | | | | | | | | | | 0.0000000000000000000000000000000000000 | | | 807 | 945 | | | | | | | | | | | | 912 | | | | IV | 100 | | | | | | | | \$10 | | | | • | | | 12.6 | 3 | | | | | 942 8-990351 1 IV 100 12.9 3 IPS1206 8.0.001 13.5 943 8-990351 1 IV 100 10.8 3 IPS1206 8.0.001 12.8 953 8-990353 1 IV 100 10.1 15.1 3 IPS1206 8.0.000 10.1 19.1 19.1 19.1 19.1 19.1 19. | | | | | | | | | | 8L000 | | | 943 | | | | | | | | | | | | | 953 8-980383 1 | | | | | | | | | | | | | 901 8-90377 2 Control 0 < 1 3 T981208 85.000 0.5 902 8-90371 2 Control 0 < 1 3 T981208 85.000 0.5 903 8-90371 2 Control 0 < 1 3 T981208 85.000 0.5 903 8-903371 2 Control 0 < 1 3 T981208 85.000 0.5 903 8-90338 2 Control 0 < 1 3 T981208 85.000 0.5 903 8-90338 2 Control 0 < 1 3 T981208 85.000 0.5 903 8-90338 3 PMc 25 1.8 3 T981208 85.000 0.5 903 8-90338 3 PMc 25 < 1 3 T981208 85.000 0.5 903 8-90338 3 PMc 25 < 1 3 T981208 85.000 0.5 904 8-90338 3 PMc 25 < 1 3 T981208 85.000 0.5 907 8-90338 3 PMc 25 < 1 3 T981208 85.000 0.5 908 8-90338 3 PMc 25 < 1 3 T981208 85.000 0.5 909 8-90338 3 PMc 25 < 1 3 T981208 85.000 0.5 909 8-90338 3 PMc 25 < 1 3 T981208 85.000 0.5 909 8-90338 3 PMc 25 < 1 3 T981208 85.000 0.5 909 8-90338 3 PMc 25 < 1 3 T981208 85.000 0.5 909 8-90338 3 PMc 25 < 1 3 T981208 85.000 1.3 900 8-90338 3 PMc 25 < 1 3 T981208 85.000 1.3 900 8-90338 4 PMc 25 1 1.3 T981208 85.000 1.4 900 8-90338 4 PMc 27 5 1.5 3 T981208 85.000 1.6 900 8-90338 4 PMc 75 1.5 3 T981208 85.000 1.6 900 8-90338 4 PMc 75 1.5 3 T981208 85.000 1.6 900 8-90338 4 PMc 75 1.5 3 T981208 85.000 1.6 900 8-90338 4 PMc 75 1.5 3 T981208 85.000 1.6 900 8-90338 5 Palmetro Loc 2 25 < 1 3 T981208 85.000 1.5 901 8-90039 5 Pelmetro Loc 2 25 < 1 3 T981208 85.000 1.5 903 8-90039 5 Pelmetro Loc 2 25 < 1 3 T981208 85.000 1.1 904 8-90039 5 Pelmetro Loc 2 25 < 1 3 T981208 85.000 1.1 904 8-90039 6 Pelmetro Loc 2 25 < 1 3 T981208 85.000 1.5 904 8-90039 6 Pelmetro Loc 2 25 < 1 3 T981208 85.000 1.5 905 8-90039 6 Pelmetro Loc 2 25 < 1 3 T981208 85.000 1.5 906 8-90039 7 Pelmetro Loc 2 25 < 1 3 T981208 85.000 1.5 907 8-90039 6 Pelmetro Loc 2 25 < 1 3 T981208 85.000 1.5 908 8-90039 6 Pelmetro Loc 2 25 < 1 3 T981208 85.000 1.5 909 8-90039 6 Pelmetro Loc 2 25 < 1 3 T981208 85.000 1.5 909 8-90039 6 Pelmetro Loc 2 25 < 1 3 T981208 85.000 1.5 900 8-90039 7 Pelmetro Loc 2 25 < 1 3 T981208 85.000 1.5 901 8-90039 7 Pelmetro Loc 2 25 < 1 3 T981208 85.000 1.5 903 8-90039 7 Pelmetro Loc 2 25 < 1 3 T981208 85.000 1.5 903 8-90039 8 Pelmetro Loc 4 25 < 1 3 T981208 85.000 1.5 909 8-900 | | | | | | | | | | | | | 902 8-990388 2 Control 0 < 1 3 T981206 8LCOC 0.5 925 8-990314 2 Control 0 < 1 3 T881206 8LCOC 0.5 925 8-990314 2 Control 0 < 1 3 T881206 8LCOC 0.5 928 8-990314 2 Control 0 < 1 3 T881206 8LCOC 0.5 928 8-990316 3 PMc 25 < 1 3 T881206 8LCOC 0.5 929 8-990316 3 PMc 25 < 1 3 T881206 8LCOC 0.5 927 8-990328 3 PMc 25 < 1 3 T881206 8LCOC 0.5 927 8-990328 3 PMc 25 < 1 3 T881206 8LCOC 0.5 927 8-990328 3 PMc 25 < 1 3 T881206 8LCOC 0.5 928 8-990328 3 PMc 25 < 1 3 T881206 8LCOC 0.5 929 8-990328 3 PMc 25 < 1 3 T881206 8LCOC 0.5 929 8-990328 3 PMc 25 < 1 3 T881206 8LCOC 0.5 920 8-990328 3 PMc 25 < 1 3 T881206 8LCOC 0.5 921 8-990328 3 PMc 25 < 1 3 T881206 8LCOC 0.5 922 8-990328 4 PMc 25 < 1 3 T881206 8LCOC 0.5 923 8-990328 4 PMc 25 1 3 T881206 8LCOC 1.3 924 8-990328 4 PMc 27 1 1.6 3 T891206 8LCOC 1.3 925 8-990328 4 PMc 27 1 1.6 3 T891206 8LCOC 1.8 926 8-990328 4 PMc 27 1 1.6 3 T891206 8LCOC 1.8 927 8-990328 5 PMc 27 1 1.6 3 T891206 8LCOC 1.8 928 8-990328 5 PMc 27 1 1.6 3 T891206 8LCOC 1.5 929 8-990328 5 PMc 27 1 1.6 3 T891206 8LCOC 23 920 8-990328 5 PMc 27 1 1.6 3 T891206 8LCOC 23 920 8-990328 5 PMc 27 1 1.6 3 T891206 8LCOC 23 920 8-990328 5 PMc 27 1 1.6 3 T891206 8LCOC 23 924 8-990328 5 PMc 27 1 1.6 3 T891206 8LCOC 23 925 8-990328 5 PMc 27 1 1.6 3 T891206 8LCOC 23 926 8-990328 5 PMc 27 1 1.6 3 T891206 8LCOC 23 927 8-990328 5 PMc 27 1 1.6 3 T891206 8LCOC 23 928 8-990329 5 PMc 27 1 1.6 3 T891206 8LCOC 25 929 8-990329 5 PMc 27 1 1.6 3 T891206 8LCOC 25 920 8-990329 5 PMc 27 1 1.6 3 T891206 8LCOC 25 921 8-990329 5 PMc 27 1 1.6 3 T891206 8LCOC 25 923 8-990329 5 PMc 27 1 1.6 3 T891206 8LCOC 25 924 8-990329 5 PMc 27 1 1.6 3 T891206 8LCOC 25 925 1 1.6 3 T891206 8LCOC 25 926 8-990329 6 PMc 27 1 1.6 3 T891206 8LCOC 25 927 8-990329 6 PMc 27 1 1.6 3 T891206 8LCOC 25 928 8-990329 6 PMc 27 1 1.6 3 T891206 8LCOC 25 929 8-990329 6 PMc 27 1 1.6 3 T891206 8LCOC 25 920 8-990329 6 PMc 27 1 1.6 3 T891206 8LCOC 25 921 8-990329 6 PMc 27 1 1.6 3 T891206 8LCOC 25 921 8-990329 6 PMc 27 1 1.6 3 T891206 8LCOC 25 921 8-990329 7 PMc 27 1 1.6 3 T891206 8LCOC | | | | Control | | < | | | | | | | 920 6-980371 2 Control 0 < 1 3 TB51206 BLCCCC 0.5 P258 6-980384 2 Control 0 < 1 3 TB51206 BLCCCC 0.5 P258 6-980384 2 Control 0 < 1 3 TB51206 BLCCCC 0.5 P358 6-980386 3 PPAc 25 1.8 3 TB51206 BLCCCC 0.5 P31 6-980388 3 PPAc 25 1 3 TB51206 BLCCCC 0.5 P31 6-980388 3 PPAc 25 1 3 TB51206 BLCCCC 0.5 P31 6-980388 3 PPAc 25 1 3 TB51206 BLCCCC 0.5 P31 6-980388 3 PPAc 25 1.3 3 TB51206 BLCCCC 0.5 P31 6-980388 3 PPAc 25 1.3 3 TB51206 BLCCCC 0.5 P31 6-980388 3 PPAc 25 1.3 3 TB51206 BLCCCC 0.5 P32 PAC | | | | | 0 | < | 1 | 3 | | | | | 928 8-800349 2 Control 0 - 1 3 TR91208 8,000 0.5 909 8-900369 3 PPAC 25 - 1 3 TR91206 8,000 0.5 927 8-900369 3 PPAC 25 - 1 3 TR91206 8,000 0.5 931 8-900388 3 PPAC 25 - 1 3 TR91206 8,000 0.5 931 8-900388 3 PPAC 25 - 1 3 TR91206 8,000 0.5 931 8-900389 3 PPAC 25 - 1 3 TR91206 8,000 0.5 931 8-900389 3 PPAC 25 - 1 3 TR91206 8,000 1.3 940 8-900389 3 PPAC 25 - 1 3 TR91206 8,000 1.3 940 8-900389 4 PPAC 75 1.3 3 TR91206 8,000 1.3 933 8-900380 4 PPAC 75 1.5 3 TR91206 8,000 1.5 943 8-900385 4 PPAC 75 2.3 TR91206 8,000 1.5 946 8-900385 4 PPAC 75 2.3 TR91206 8,000 0.5 958 8-900385 5 Palmerton Loc 2 25 - 1 3 TR91206 8,000 0.5 939 8-900385 6 PAC 75 1.5 3 TR91206 8,000 0.5 940 8-900385 7 PAC 75 1.5 3 TR91206 8,000 0.5 941 8-900385 6 PAC 75 1.5 3 TR91206 8,000 0.5 942 8-900385 7 PAC 75 1.5 3 TR91206 8,000 0.5 943 8-900385 6 PALMERTON Loc 2 25 - 1 3 TR91206 8,000 0.5 944 8-900385 7 PAC 75 1.5 3 TR91206 8,000 0.5 944 8-900385 6 PALMERTON LOC 2 25 - 1 3 TR91206 8,000 0.5 944 8-900385 7 PALMERTON LOC 2 25 - 1 3 TR91206 8,000 0.5 945 8-900385 6 PALMERTON LOC 2 25 - 1 3 TR91206 8,000 0.5 946 8-900385 7 PALMERTON LOC 2 25 - 1 3 TR91206 8,000 0.5 947 8-900385 6 PALMERTON LOC 2 25 - 1 3 TR91206 8,000 0.5 948 8-900385 6 PALMERTON LOC 2 25 - 1 3 TR91206 8,000 0.5 949 8-900385 7 PALMERTON LOC 2 25 - 1 3 TR91206 8,000 0.5 940 8-900387 7 PALMERTON LOC 2 25 - 1 3 TR91206 8,000 0.5 941 8-900387 7 PALMERTON LOC 2 75 - 3 6 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 | | | | | _ | | | | T951206 | | | | 905 8-900386 3 PbAc 25 1.8 3 T051205 8LCCO 0.5 907 8-900383 3 PbAc 25 4 1 3 T051205 8LCCO 0.5 931 8-900383 3 PbAc 25 4 1 3 T051205 8LCCO 0.5 940 8-900383 3 PbAc 25 1 3 T051205 8LCCO 0.5 940 8-900383 3 PbAc 25 1 3 T051205 8LCCO 0.5 940 8-900383 3 PbAc 25 1 3 T051205 8LCCO 0.5 940 8-900383 4 PbAc 75 1 3 T051205 8LCCO 1.3 941 8-900382 4 PbAc 75 1 3 T051205 8LCCO 1.3 942 8-900382 4 PbAc 75 1 3 T051205 8LCCO 1.3 943 8-900382 4 PbAc 75 1 3 T051205 8LCCO 1.3 944 8-900385 4 PbAc 75 1 3 T051205 8LCCO 1.5 945 8-900385 4 PbAc 75 1 3 T051205 8LCCO 1.5 946 8-900385 4 PbAc 75 1 3 T051205 8LCCO 1.5 947 8-900385 5 Palmetron Loc 2 25 1 1 3 T051205 8LCCO 0.5 948 8-900395 6 Palmetron Loc 2 25 1 1 3 T051205 8LCCO 0.5 949 8-900395 6 Palmetron Loc 2 25 1 1 3 T051205 8LCCO 0.5 940 8-900395 6 Palmetron Loc 2 25 1 1 3 T051205 8LCCO 0.5 940 8-900039 6 Palmetron Loc 2 25 1 1 3 T051205 8LCCO 0.5 941 8-900386 6 Palmetron Loc 2 25 1 1 3 T051205 8LCCO 0.5 944 8-900396 6 Palmetron Loc 2 25 1 1 3 T051205 8LCCO 0.5 944 8-900397 5 Palmetron Loc 2 25 1 1 3 T051205 8LCCO 0.5 945 8-900396 6 Palmetron Loc 2 25 1 1 3 T051205 8LCCO 0.5 946 8-900397 6 Palmetron Loc 2 25 1 1 3 T051205 8LCCO 0.5 948 8-900396 6 Palmetron Loc 2 25 1 1 3 T051205 8LCCO 0.5 949 8-900396 6 Palmetron Loc 2 25 1 1 1 3 T051205 8LCCO 0.5 940 8-900396 7 Palmetron Loc 2 75 1 1 3 T051205 8LCCO 0.5 941 8-900396 7 Palmetron Loc 2 75 1 1 3 T051206 8LCCO 0.5 944 8-900397 7 Palmetron Loc 2 25 1 1 1 3 T051206 8LCCO 0.5 945 8-900397 7 Palmetron Loc 2 25 1 1 1 3 T051206 8LCCO 0.5 946 8-900398 7 Palmetron Loc 2 25 1 1 1 3 T051206 8LCCO 0.5 947 8-900398 7 Palmetron Loc 2 25 1 1 1 3 T051206 8LCCO 0.5 948 8-900398 7 Palmetron Loc 2 25 1 1 1 3 T051206 8LCCO 0.5 949 8-900398 7 Palmetron Loc 2 25 1 1 1 3 T051206 8LCCO 0.5 940 8-900398 7 Palmetron Loc 2 25 1 1 1 3 T051206 8LCCO 0.5 941 8-900398 8 Palmetron Loc 2 25 1 1 1 3 T051206 8LCCO 0.5 944 8-900398 9 Palmetron Loc 2 25 1 1 1 3 T051206 8LCCO 0.5 945 8-900398 9 Palmetron Loc 2 25 1 1 1 3 T051206 8LCCO 0.5 940 8-900398 9 Palmetron Loc 4 25 1 1 3 T | | | | | _ | | | | | | | | 909 8-900369 3 PhAc 25 < 1 3 T851265 BLCOD 0.5 931 8-900383 3 PhAc 25 < 1 3 T851265 BLCOD 0.5 931 8-900388 3 PhAc 25 1 3 T851206 BLCOD 0.5 931 8-900388 3 PhAc 25 1 3 T851206 BLCOD 0.5 932 8-900380 4 PhAc 75 1.3 3 T851206 BLCOD 1.3 933 8-900382 4 PhAc 75 1.8 3 T851206 BLCOD 1.3 933 8-900382 4 PhAc 75 1.8 3 T851206 BLCOD 1.3 940 8-900385 4 PhAc 75 1.8 3 T851206 BLCOD 1.3 940 8-900385 4 PhAc 75 1.8 3 T851206 BLCOD 1.5 950 8-900385 4 PhAc 75 2.3 3 T851206 BLCOD 1.5 950 8-900385 4 PhAc 75 2.3 3 T851206 BLCOD 1.5 950 8-900385 4 PhAc 75 2.3 3 T851206 BLCOD 0.5 951 8-900385 5 Palmeton Loc 2 25 < 1 3 T851206 BLCOD 0.5 944 8-900395 5 Palmeton Loc 2 25 < 1 1 3 T851206 BLCOD 0.5 944 8-900385 6 Palmeton Loc 2 25 < 1 1 3 T851206 BLCOD 0.5 944 8-900385 6 Palmeton Loc 2 25 < 1 1 3
T851206 BLCOD 0.5 944 8-900386 6 Palmeton Loc 2 25 < 1 1 3 T851206 BLCOD 0.5 944 8-900386 6 Palmeton Loc 2 25 < 1 1 3 T851206 BLCOD 0.5 944 8-900386 6 Palmeton Loc 2 25 < 1 1 3 T851206 BLCOD 0.5 945 8-900386 6 Palmeton Loc 2 25 < 1 1 3 T851206 BLCOD 0.5 946 8-900387 6 Palmeton Loc 2 75 3 3.8 3 T851206 BLCOD 0.5 947 8-900386 6 Palmeton Loc 2 75 3 3.8 3 T851206 BLCOD 0.5 948 8-900386 6 Palmeton Loc 2 75 3 3.8 3 T851206 BLCOD 0.5 949 8-900386 7 Palmeton Loc 2 75 3 3.8 3 T851206 BLCOD 0.5 940 8-900386 7 Palmeton Loc 2 75 3 3.8 3 T851206 BLCOD 0.5 941 8-900387 6 Palmeton Loc 2 75 3 3.8 3 T851206 BLCOD 0.5 941 8-900387 6 Palmeton Loc 2 75 3 3.8 3 T851206 BLCOD 0.5 942 8-900387 6 Palmeton Loc 2 75 3 3.8 3 T851206 BLCOD 0.5 943 8-900387 6 Palmeton Loc 2 75 3 3.8 3 T851206 BLCOD 0.5 944 8-900387 7 Palmeton Loc 2 75 3 3.8 3 T851206 BLCOD 0.5 945 8-900388 7 Palmeton Loc 2 75 3 3.8 3 T851206 BLCOD 0.5 946 8-900389 7 Palmeton Loc 2 75 3 3.8 3 T851206 BLCOD 0.5 947 8-900389 7 Palmeton Loc 2 75 3 3.8 3 T851206 BLCOD 0.5 948 8-900389 8 Palmeton Loc 2 75 3 3.8 3 T851206 BLCOD 0.5 949 8-900389 8 Palmeton Loc 2 75 3 3.8 3 T851206 BLCOD 0.5 940 8-900389 8 Palmeton Loc 2 75 3 3.8 3 T851206 BLCOD 0.5 941 8-900389 8 Palmeton Loc 2 75 3 3.8 3 T851206 BLCOD 0.5 949 8-900389 | | | | | | • | | | | (0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(| | | 927 6-890333 3 PIAC 25 1 1 3 TIBS1208 BLOOD 0.5 931 6-890383 3 PIAC 25 1.4 3 TIBS1208 BLOOD 1.3 940 6-890383 3 PIAC 25 1.4 3 TIBS1208 BLOOD 1.4 923 6-890382 4 PIAC 75 1.3 3 TIBS1208 BLOOD 1.4 933 8-890382 4 PIAC 75 1.8 3 TIBS1208 BLOOD 1.8 948 6-890385 4 PIAC 75 1.8 3 TIBS1208 BLOOD 1.8 950 8-890381 4 PIAC 75 4 3 TIBS1208 BLOOD 4 950 8-890381 4 PIAC 75 2.3 3 TIBS1208 BLOOD 1.5 950 8-890385 5 PIAC 75 1.5 3 TIBS1208 BLOOD 1.5 951 8-890382 5 PIAC 75 1.5 3 TIBS1208 BLOOD 1.5 929 8-990399 5 PIAC 75 1.5 3 TIBS1208 BLOOD 1.5 924 8-890395 6 PIAC 75 1.5 3 TIBS1208 BLOOD 0.5 924 8-890395 6 PIAC 75 1.5 3 TIBS1208 BLOOD 0.5 924 8-890395 6 PIAC 75 1.5 3 TIBS1208 BLOOD 0.5 925 8-890395 6 PIAC 75 1.5 3 TIBS1208 BLOOD 0.5 926 8-890395 6 PIAC 75 1.5 3 TIBS1208 BLOOD 0.5 927 8-890396 6 PIAC 75 1.5 3 TIBS1208 BLOOD 0.5 928 8-890397 6 PIAC 75 1.5 3 TIBS1208 BLOOD 0.5 929 8-890399 6 PIAC 75 1.5 3 TIBS1208 BLOOD 0.5 920 8-890397 6 PIAC 75 1.5 3 TIBS1208 BLOOD 0.5 921 8-890397 6 PIAC 75 1.5 3 TIBS1208 BLOOD 0.5 922 8-890397 6 PIAC 75 1.5 3 TIBS1208 BLOOD 0.5 923 8-890397 6 PIAC 75 1.5 3 TIBS1208 BLOOD 0.5 924 8-890397 7 PIAC 75 1.5 3 TIBS1208 BLOOD 0.5 925 8-890397 7 PIAC 75 1.5 3 TIBS1208 BLOOD 0.5 926 8-890399 7 PIAC 75 1.5 3 TIBS1208 BLOOD 0.5 927 8-890399 7 PIAC 75 1.5 3 TIBS1208 BLOOD 0.5 928 8-890399 7 PIAC 75 1.5 3 TIBS1208 BLOOD 0.5 929 8-890399 7 PIAC 75 1.5 3 TIBS1208 BLOOD 0.5 920 8-890399 7 PIAC 75 1.5 3 TIBS1208 BLOOD 0.5 920 8-890399 7 PIAC 75 1.5 3 TIBS1208 BLOOD 0.5 921 8-890399 7 PIAC 75 1.5 3 TIBS1208 BLOOD 0.5 922 8-890399 7 PIAC 75 1.5 3 TIBS1208 BLOOD 0.5 923 8-890399 7 PIAC 75 1.5 3 TIBS1208 BLOOD 0.5 924 8-890399 7 PIAC 75 1.5 3 TIBS1208 BLOOD 0.5 925 8-890399 7 PIAC 75 1.5 3 TIBS1208 BLOOD 0.5 926 8-890399 7 PIAC 75 1.5 3 TIBS1208 BLOOD 0.5 927 8-890399 7 PIAC 75 1.5 3 TIBS1208 BLOOD 0.5 928 8-890399 7 PIAC 75 1.5 3 TIBS1208 BLOOD 0.5 929 8-890399 7 PIAC 75 1.5 3 TIBS1208 BLOOD 0.5 929 8-890399 8 PIAC 75 1.5 3 TIBS1208 BLOOD 0.5 926 8-890399 8 PIAC 75 1.5 3 TIBS1208 BLOOD 0.5 927 8-890399 8 PIAC 75 1.5 3 TIBS1 | 909 | 8-990369 | 3 | | | < | | | | | | | 931 B-99038B 3 PPAC 25 1.3 3 T991206 BLOOD 1.3 940 B-990380 3 PPAC 25 1.4 3 T991206 BLOOD 1.4 923 B-990380 4 PPAC 75 1.3 3 T991206 BLOOD 1.3 933 B-990382 4 PPAC 75 1.5 3 T991206 BLOOD 1.3 948 B-990386 4 PPAC 75 1.5 3 T991206 BLOOD 1.5 948 B-990385 4 PPAC 75 2.3 3 T991206 BLOOD 1.5 950 B-990381 4 PPAC 75 2.3 3 T991206 BLOOD 1.5 950 B-990385 4 PPAC 75 1.5 3 T991206 BLOOD 1.5 951 B-990385 5 Palmetton Loc 2 25 1.1 3 T991206 BLOOD 1.5 929 B-990395 5 Palmetton Loc 2 25 1.1 3 T991206 BLOOD 0.5 947 B-990386 5 Palmetton Loc 2 25 1.1 3 T991208 BLOOD 0.5 954 B-990386 5 Palmetton Loc 2 25 1.3 3 T991208 BLOOD 0.5 965 B-990386 5 Palmetton Loc 2 25 1.3 3 T991208 BLOOD 0.5 966 B-990386 6 Palmetton Loc 2 25 1.3 3 T991208 BLOOD 0.5 967 B-990386 6 Palmetton Loc 2 25 1.3 3 T991208 BLOOD 0.5 968 B-990386 6 Palmetton Loc 2 25 1.5 3 T991208 BLOOD 0.5 969 B-990386 6 Palmetton Loc 2 75 3.6 3 T991208 BLOOD 0.5 960 B-990386 6 Palmetton Loc 2 75 3.6 3 T991208 BLOOD 0.5 961 B-990387 6 Palmetton Loc 2 75 3.6 3 T991208 BLOOD 0.5 963 B-990373 6 Palmetton Loc 2 75 3.4 3 T991208 BLOOD 0.5 964 B-990387 7 Palmetton Loc 2 75 3.4 3 T991208 BLOOD 0.5 965 B-990387 7 Palmetton Loc 2 75 3.4 3 T991208 BLOOD 0.5 968 B-990387 7 Palmetton Loc 2 75 3.4 3 T991208 BLOOD 0.5 969 B-990389 7 Palmetton Loc 2 25 4.5 3 T991208 BLOOD 0.5 969 B-990389 7 Palmetton Loc 2 225 4.5 3 T991208 BLOOD 0.5 960 B-990389 7 Palmetton Loc 2 225 4.5 3 T991208 BLOOD 0.5 961 B-990387 7 Palmetton Loc 2 225 4.5 3 T991208 BLOOD 0.5 962 B-990387 7 Palmetton Loc 2 225 4.5 3 T991208 BLOOD 0.5 963 B-990387 8 Palmetton Loc 2 225 4.5 3 T991208 BLOOD 0.5 963 B-990387 8 Palmetton Loc 2 225 4.5 3 T991208 BLOOD 0.5 964 B-990387 8 Palmetton Loc 2 225 4.5 3 T991208 BLOOD 0.5 965 B-990389 8 PAlmetton Loc 2 225 4.5 3 T991208 BLOOD 0.5 967 B-990380 9 PAlmetton Loc 2 225 4.5 3 T991208 BLOOD 0.5 968 B-990389 8 PAlmetton Loc 2 225 4.5 3 T991208 BLOOD 0.5 969 B-990389 8 PAlmetton Loc 4 22 4.5 4 1 3 T991208 BLOOD 0.5 969 B-990389 8 PAlmetton Loc 4 22 5 1 1 3 T991208 BLOOD 0.5 969 B-990389 8 PAlmetton Loc 4 | | | - | PbAc | | | | _ | | | | | 923 8-990380 4 PbAc 75 1.3 3 TB51206 BLCC00 1.3 933 8-990382 4 PbAc 75 1.5 3 TB51206 BLCC00 1.8 948 8-990385 4 PbAc 75 1.5 3 TB51206 BLCC00 4 950 8-990381 4 PbAc 75 2.3 3 TB51206 BLCC00 4 950 8-990381 4 PbAc 75 1.5 3 TB51206 BLCC00 2.3 956 8-990381 4 PbAc 75 1.5 3 TB51206 BLCC00 1.5 951 8-990382 5 Palmerton Loc 2 25 1.1 3 TB51206 BLCC00 0.5 934 8-990385 6 Palmerton Loc 2 25 1.1 3 TB51206 BLCC00 0.5 947 8-990385 6 Palmerton Loc 2 25 1.1 3 TB51206 BLCC00 0.5 954 8-990387 5 Palmerton Loc 2 25 1.5 3 TB51206 BLCC00 0.5 954 8-990387 6 Palmerton Loc 2 25 1.5 3 TB51206 BLCC00 0.5 953 8-990389 6 Palmerton Loc 2 25 1.5 3 TB51206 BLCC00 0.5 951 8-990389 6 Palmerton Loc 2 75 3.8 3 TB51206 BLCC00 0.5 952 8-990389 6 Palmerton Loc 2 75 2 3 TB51206 BLCC00 0.5 953 8-990376 6 Palmerton Loc 2 75 3.8 3 TB51206 BLCC00 0.5 954 8-900377 6 Palmerton Loc 2 75 1.5 3 TB51206 BLCC00 0.5 955 8-900389 6 Palmerton Loc 2 75 1.5 3 TB51206 BLCC00 0.5 951 8-990389 7 Palmerton Loc 2 75 1.5 3 TB51206 BLCC00 0.5 952 8-900377 8 Palmerton Loc 2 75 1.5 3 TB51206 BLCC00 0.5 953 8-900377 8 Palmerton Loc 2 75 1.5 3 TB51206 BLCC00 0.5 954 8-900378 8 Palmerton Loc 2 75 1.5 3 TB51206 BLCC00 0.5 955 8-900389 7 Palmerton Loc 2 75 1.5 3 TB51206 BLCC00 0.5 951 8-900379 7 Palmerton Loc 2 75 1.5 3 TB51206 BLCC00 0.5 952 8-900373 8 Palmerton Loc 2 225 3.8 3 TB51206 BLCC00 0.5 953 8-900378 8 Palmerton Loc 2 225 3.8 3 TB51206 BLCC00 0.5 954 8-900379 7 Palmerton Loc 2 225 3.8 3 TB51206 BLCC00 0.5 958 8-900379 7 Palmerton Loc 2 225 3.8 3 TB51206 BLCC00 0.5 952 8-900379 7 Palmerton Loc 2 225 3.7 3 TB51206 BLCC00 0.5 953 8-900375 9 Palmerton Loc 2 225 3.7 3 TB51206 BLCC00 0.5 954 8-900375 9 Palmerton Loc 2 225 3.7 3 TB51206 BLCC00 0.5 957 8-900385 8 Palmerton Loc 2 225 3.7 3 TB51206 BLCC00 0.5 958 8-900375 9 Palmerton Loc 2 225 3.7 3 TB51206 BLCC00 0.5 954 8-900375 9 Palmerton Loc 2 225 3.7 3 TB51206 BLCC00 0.5 954 8-900375 9 Palmerton Loc 2 25 3.8 3 TB51206 BLCC00 0.5 954 8-900375 9 Palmerton Loc 4 25 3 1.3 TB51206 BLCC00 0.5 959 8-9000385 9 Palmerton Loc 4 25 3.9 3 TB | | | • | | | | 1.3 | 3 | T951206 | | | | BASS B-990382 4 | | | 3 | | | | | | • | General Control of the th | 1.4 | | 948 8-960356 4 PDAC 75 4 3 TB51206 BLCOCU 4 8 950 8-960381 4 PDAC 75 4 3 TB51206 BLCOCU 4 4 950 8-960381 4 PDAC 75 1.5 3 TB51206 BLCOCU 1.5 911 8-860382 5 Palmetron Loc 2 25 1 1 3 TB51206 BLCOCU 0.5 911 8-860382 5 Palmetron Loc 2 25 1 1 3 TB51206 BLCOCU 0.5 911 8-860382 5 Palmetron Loc 2 25 1 1 3 TB51206 BLCOCU 0.5 911 8-860385 6 Palmetron Loc 2 25 1 1 3 TB51206 BLCOCU 0.5 911 8-960385 6 Palmetron Loc 2 25 1 1 3 TB51206 BLCOCU 0.5 911 8-960385 6 Palmetron Loc 2 25 1 1 3 TB51206 BLCOCU 0.5 911 8-960385 6 Palmetron Loc 2 25 1 1 3 TB51206 BLCOCU 0.5 914 8-960387 5 Palmetron Loc 2 25 1 1 3 TB51206 BLCOCU 0.5 914 8-960385 6 Palmetron Loc 2 25 1 1 3 TB51206 BLCOCU 0.5 914 8-960385 6 Palmetron Loc 2 25 1 1 3 TB51206 BLCOCU 0.5 914 8-960386 6 Palmetron Loc 2 75 3.8 3 TB51208 BLCOCU 0.5 914 8-960386 6 Palmetron Loc 2 75 2 3 TB51208 BLCOCU 0.5 914 8-960386 6 Palmetron Loc 2 75 1 3 TB51208 BLCOCU 0.5 915 8-960373 6 Palmetron Loc 2 75 1 3 TB51208 BLCOCU 0.5 915 8-960373 6 Palmetron Loc 2 75 1 3 TB51208 BLCOCU 0.5 915 8-960373 6 Palmetron Loc 2 75 1 3 TB51208 BLCOCU 0.5 915 8-960388 7 Palmetron Loc 2 75 1 3 TB51208 BLCOCU 0.5 915 8-960388 7 Palmetron Loc 2 75 1 5 3 TB51208 BLCOCU 0.5 915 8-960388 7 Palmetron Loc 2 75 1 5 3 TB51208 BLCOCU 0.5 916 8-960388 7 Palmetron Loc 2 25 1 5 5 3 TB51208 BLCOCU 0.5 916 8-960388 7 Palmetron Loc 2 225 3 3 3 TB51208 BLCOCU 0.5 916 8-960387 7 Palmetron Loc 2 225 3 3 TB51208 BLCOCU 0.5 918 8-960387 7 Palmetron Loc 2 225 3 3 7 TB51208 BLCOCU 0.5 918 8-960387 8 Palmetron Loc 2 225 3 3 7 TB51208 BLCOCU 0.5 918 8-960385 8 Palmetron Loc 2 25 1 1 3 TB51208 BLCOCU 0.5 918 8-960385 8 Palmetron Loc 2 25 1 1 3 TB51208 BLCOCU 0.5 918 8-960385 8 Palmetron Loc 2 25 1 1 3 TB51208 BLCOCU 0.5 918 8-960385 8 Palmetron Loc 4 25 1 1 3 TB51208 BLCOCU 0.5 918 8-960375 9 Palmetron Loc 4 25 1 1 3 TB51208 BLCOCU 0.5 918 8-960375 9 Palmetron Loc 4 25 1 1 3 TB51208 BLCOCU 0.5 918 8-960375 9 Palmetron Loc 4 25 1 1 3 TB51208 BLCOCU 0.5 918 918 8-960375 9 Palmetron Loc 4 25 1 1 3 TB51208 BLCOCU 0.5 918 918 8-960375 9 Pal | | | 2 | | | | | _ | | And the second s | | | 960 8-900381 4 PDAC 75 2.3 3 TBS1206 BLCCO 2.3 896 8-900385 4 PDAC 75 1.5 3 TBS1206 BLCCO 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 | | | 4 | | | | | | | | | | 966 | 950 | 8-990381 | 4 | | | | | - | | | | | 911 8-990359 5 Palmerton
Loc 2 25 4 1 3 TB51206 8LCCIS 0.6 934 8-990359 5 Palmerton Loc 2 25 1.1 3 TB51206 8LCCIS 0.5 934 8-990359 6 Palmerton Loc 2 25 4 1 3 TB51206 8LCCIS 0.5 934 8-990356 6 Palmerton Loc 2 25 4 1 3 TB51206 8LCCIS 0.5 934 8-99036 6 Palmerton Loc 2 25 4 1 3 TB51206 8LCCIS 0.5 93 8-99040 6 Palmerton Loc 2 75 3.6 3 TB51206 8LCCIS 0.5 93 8-99040 6 Palmerton Loc 2 75 3.6 3 TB51206 8LCCIS 0.5 938 8-990376 6 Palmerton Loc 2 75 1 3 TB51206 8LCCIS 0.5 938 8-990376 6 Palmerton Loc 2 75 1 3 TB51206 8LCCIS 0.5 938 8-990376 6 Palmerton Loc 2 75 1 3 TB51206 8LCCIS 0.5 938 8-990376 6 Palmerton Loc 2 75 1 5 3 TB51206 8LCCIS 0.5 93 93 8-990378 7 Palmerton Loc 2 75 1.5 3 TB51206 8LCCIS 0.5 93 93 8-990378 7 Palmerton Loc 2 225 3.8 3 TB51206 8LCCIS 0.5 93 94 8-990379 7 Palmerton Loc 2 225 3.8 3 TB51206 8LCCIS 0.5 93 94 8-990379 7 Palmerton Loc 2 225 3.8 3 TB51206 8LCCIS 0.5 93 94 8-990379 7 Palmerton Loc 2 225 3.8 3 TB51206 8LCCIS 0.5 94 94 8-990379 7 Palmerton Loc 2 225 3.7 3 TB51206 8LCCIS 0.5 94 94 8-990379 7 Palmerton Loc 2 225 3.7 3 TB51206 8LCCIS 0.5 94 94 8-990379 7 Palmerton Loc 2 225 8.1 3 TB51206 8LCCIS 0.5 94 94 8-990379 7 Palmerton Loc 2 225 8.1 3 TB51206 8LCCIS 0.5 94 94 8-990379 7 Palmerton Loc 2 225 8.1 3 TB51206 8LCCIS 0.5 94 94 8-990379 7 Palmerton Loc 2 225 8.1 3 TB51206 8LCCIS 0.5 94 94 8-990379 8 Palmerton Loc 2 225 8.1 3 TB51206 8LCCIS 0.5 94 94 8-990379 8 Palmerton Loc 4 25 1 3 TB51206 8LCCIS 0.5 94 94 8-990379 8 Palmerton Loc 4 25 1 3 TB51206 8LCCIS 0.5 94 94 8-990379 9 Palmerton Loc 4 25 1 3 TB51206 8LCCIS 0.5 94 94 8-990379 9 Palmerton Loc 4 25 1 3 TB51206 8LCCIS 0.5 94 94 8-990379 9 Palmerton Loc 4 25 3 3 3 TB51206 8LCCIS 0.5 94 94 8-990379 9 Palmerton Loc 4 25 3 3 3 TB51206 8LCCIS 0.5 94 94 8-990379 9 Palmerton Loc 4 25 3 3 3 TB51206 8LCCIS 0.5 94 94 8-990379 9 Palmerton Loc 4 25 3 3 3 TB51206 8LCCIS 0.5 94 94 8-990379 9 Palmerton Loc 4 25 3 3 3 TB51206 8LCCIS 0.5 94 94 8-990379 10 Palmerton Loc 4 25 3 3 3 TB51206 8LCCIS 0.5 94 94 8-990374 9 Palmerton Loc 4 25 3 3 3 TB51206 8LCCIS 0.5 9 | | | 4 | | | | | 3 | | | | | 934 8-990395 5 Palmerton Loc 2 25 < 1 3 TB51206 BLCOCB 0.5 947 8-B03386 5 Palmerton Loc 2 25 < 1 3 TB51206 BLCOCB 0.5 954 8-990387 5 Palmerton Loc 2 25 1.5 3 TB51206 BLCOCB 0.5 963 8-990403 6 Palmerton Loc 2 75 3.6 3 TB51208 BLCOCB 1.5 960 8-990389 6 Palmerton Loc 2 75 2 3 TB51208 BLCOCB 2 951 8-990376 6 Palmerton Loc 2 75 3.6 3 TB51208 BLCOCB 0.5 951 8-990376 6 Palmerton Loc 2 75 3.4 3 TB51208 BLCOCB 0.5 951 8-990377 6 Palmerton Loc 2 75 1.5 3 TB51208 BLCOCB 3.4 955 8-990377 6 Palmerton Loc 2 75 1.5 3 TB51208 BLCOCD 0.5 966 8-990388 7 Palmerton Loc 2 25 5.5 3 TB51208 BLCOCD 1.5 906 8-990389 7 Palmerton Loc 2 225 3.8 3 TB51208 BLCOCD 5.5 916 8-990387 7 Palmerton Loc 2 225 3.8 3 TB51208 BLCOCD 3.8 916 8-990387 7 Palmerton Loc 2 225 3.8 3 TB51208 BLCOCD 4.5 918 8-990387 7 Palmerton Loc 2 225 3.7 3 TB51208 BLCOCD 4.5 919 8-990387 7 Palmerton Loc 2 225 3.7 3 TB51208 BLCOCD 4.5 910 8-990387 7 Palmerton Loc 2 225 3.7 3 TB51208 BLCOCD 4.5 910 8-990387 8 Palmerton Loc 2 225 3.7 3 TB51208 BLCOCD 4.5 910 8-990387 8 Palmerton Loc 2 225 3.7 3 TB51208 BLCOCD 6.1 913 8-990404 8 Palmerton Loc 4 25 2.2 3 TB51208 BLCOCD 6.1 914 8-990387 8 Palmerton Loc 4 25 1 3 TB51208 BLCOCD 6.5 937 8-990387 8 Palmerton Loc 4 25 1 3 TB51208 BLCOCD 0.5 938 8-990387 8 Palmerton Loc 4 25 1 3 TB51208 BLCOCD 0.5 939 8-990385 8 Palmerton Loc 4 25 1 3 TB51208 BLCOCD 0.5 930 8-990385 8 Palmerton Loc 4 25 1 3 TB51208 BLCOCD 0.5 931 8-990386 9 Palmerton Loc 4 75 1 3 TB51208 BLCOCD 0.5 932 8-990385 8 Palmerton Loc 4 75 1 3 TB51208 BLCOCD 0.5 934 8-990386 9 Palmerton Loc 4 75 1 3 TB51208 BLCOCD 0.5 944 8-990386 9 Palmerton Loc 4 75 1 3 TB51208 BLCOCD 0.5 945 8-990386 9 Palmerton Loc 4 75 1 3 TB51208 BLCOCD 0.5 946 8-990387 9 Palmerton Loc 4 75 1 3 TB51208 BLCOCD 0.5 947 8-990386 9 Palmerton Loc 4 75 1 3 TB51208 BLCOCD 0.5 948 8-990386 9 Palmerton Loc 4 75 1 3 TB51208 BLCOCD 0.5 949 8-990386 9 Palmerton Loc 4 75 1 3 TB51208 BLCOCD 0.5 940 8-990386 9 Palmerton Loc 4 75 1 3 TB51208 BLCOCD 0.5 941 8-990386 9 Palmerton Loc 4 75 1 3 TB51208 BLCOCD 0.5 942 8-990 | | | - | | | < | | - | | | | | 947 8-990386 5 Palmerton Loc 2 25 1.5 3 TB51206 BLCOC 1.5 954 8-99037 5 Palmerton Loc 2 25 1.5 3 TB51206 BLCOC 1.5 953 8-99038 6 Palmerton Loc 2 75 3.6 3 TB51206 BLCOC 3.6 910 8-99038 6 Palmerton Loc 2 75 2 3 TB51206 BLCOC 2 938 8-99037 6 Palmerton Loc 2 75 1 3 TB51206 BLCOC 0.5 951 8-99038 6 Palmerton Loc 2 75 1 3 TB51206 BLCOC 0.5 951 8-99038 6 Palmerton Loc 2 75 1.5 3 TB51206 BLCOC 0.5 951 8-99037 6 Palmerton Loc 2 75 1.5 3 TB51206 BLCOC 0.5 951 8-99037 6 Palmerton Loc 2 75 1.5 3 TB51206 BLCOC 0.5 952 8-99037 7 Palmerton Loc 2 225 5.5 3 TB51206 BLCOC 1.5 906 8-99037 7 Palmerton Loc 2 225 3.8 3 TB51206 BLCOC 3.8 918 8-99037 7 Palmerton Loc 2 225 4.5 3 TB51206 BLCOC 3.8 918 8-99037 7 Palmerton Loc 2 225 3.7 3 TB51206 BLCOC 3.7 922 8-99037 7 Palmerton Loc 2 225 3.7 3 TB51206 BLCOC 3.7 922 8-99037 7 Palmerton Loc 2 225 3.7 3 TB51206 BLCOC 3.7 923 8-99039 7 Palmerton Loc 2 225 3.7 3 TB51206 BLCOC 3.7 924 8-99037 8 Palmerton Loc 2 225 8.1 3 TB51206 BLCOC 3.7 925 8-99037 8 Palmerton Loc 4 25 2.1 3 TB51206 BLCOC 3.7 926 8-99037 8 Palmerton Loc 4 25 1 3 TB51206 BLCOC 3.7 927 8-99038 8 Palmerton Loc 4 25 1 3 TB51206 BLCOC 3.7 928 8-99038 8 Palmerton Loc 4 25 1 3 TB51206 BLCOC 3.7 929 8-99038 8 Palmerton Loc 4 25 1 3 TB51206 BLCOC 3.7 929 8-99038 8 Palmerton Loc 4 25 1 3 TB51206 BLCOC 3.9 930 8-99038 9 Palmerton Loc 4 25 1 3 TB51206 BLCOC 3.9 944 8-99038 8 Palmerton Loc 4 25 1 3 TB51206 BLCOC 3.9 945 8-99038 9 Palmerton Loc 4 75 1 3 TB51206 BLCOC 3.9 946 8-99037 9 Palmerton Loc 4 75 1 3 TB51206 BLCOC 3.9 947 8-99038 9 Palmerton Loc 4 75 1 3 TB51206 BLCOC 3.9 948 8-99038 9 Palmerton Loc 4 75 1 3 TB51206 BLCOC 3.6 949 8-99038 9 Palmerton Loc 4 75 1 3 TB51206 BLCOC 3.6 949 8-99038 9 Palmerton Loc 4 75 3 3.9 3 TB51206 BLCOC 3.6 949 8-99038 9 Palmerton Loc 4 75 3 3.9 3 TB51206 BLCOC 3.6 949 8-99038 9 Palmerton Loc 4 75 3 3.9 3 TB51206 BLCOC 3.6 949 8-99038 9 Palmerton Loc 4 75 3 3.9 3 TB51206 BLCOC 3.9 941 8-99038 10 Palmerton Loc 4 225 3.9 3 TB51206 BLCOC 3.9 941 8-99038 10 Palmerton Loc 4 225 3.9 3 TB51206 BLCOC 3.9 941 8 | | | - | | | | | _ | | | 1.1 | | 954 8-990397 5 Palmerton Loc 2 25 1.5 3 TB51206 BLCOC 1.5 903 8-990403 6 Palmerton Loc 2 75 3.6 3 TB51206 BLCOC 3.6 910 8-990389 6 Palmerton Loc 2 75 3.6 3 TB51206 BLCOC 2 938 8-990376 6 Palmerton Loc 2 75 1 3 TB51206 BLCOC 3.4 951 8-990378 6 Palmerton Loc 2 75 1 3 TB51206 BLCOC 3.4 955 8-990373 6 Palmerton Loc 2 75 1.5 3 TB51206 BLCOC 3.4 955 8-990373 6 Palmerton Loc 2 75 1.5 3 TB51206 BLCOC 3.4 956 8-990389 7 Palmerton Loc 2 225 5.5 3 TB51206 BLCOC 5.5 908 8-990389 7 Palmerton Loc 2 225 3.8 3 TB51206 BLCOC 5.5 916 8-990379 7 Palmerton Loc 2 225 3.8 3 TB51206 BLCOC 5.5 918 8-990397 7 Palmerton Loc 2 225 3.8 3 TB51206 BLCOC 5.5 918 8-990397 7 Palmerton Loc 2 225 3.7 3 TB51206 BLCOC 5.5 918 8-990397 7 Palmerton Loc 2 225 3.8 3 TB51206 BLCOC 5.5 919 8-990397 7 Palmerton Loc 2 225 3.7 3 TB51206 BLCOC 5.5 910 8-990397 7 Palmerton Loc 2 225 3.7 3 TB51206 BLCOC 5.5 910 8-990397 7 Palmerton Loc 2 225 3.7 3 TB51206 BLCOC 5.1 911 8-990397 9 Palmerton Loc 2 225 5.1 3 TB51206 BLCOC 5.1 912 8-990397 9 Palmerton Loc 4 25 2.2 3 TB51206 BLCOC 5.1 913 8-990404 8 Palmerton Loc 4 25 2.2 3 TB51206 BLCOC 5.1 914 8-990397 8 Palmerton Loc 4 25 1 3 TB51206 BLCOC 5.5 924 8-990397 8 Palmerton Loc 4 25 1 3 TB51206 BLCOC 5.5 925 8-990397 9 Palmerton Loc 4 25 1 3 TB51206 BLCOC 5.5 926 8-990397 9 Palmerton Loc 4 25 1 3 TB51206 BLCOC 5.5 927 8-990397 9 Palmerton Loc 4 25 1 3 TB51206 BLCOC 5.5 928 8-990397 9 Palmerton Loc 4 75 1 3 TB51206 BLCOC 5.5 929 8-990397 9 Palmerton Loc 4 75 1 3 TB51206 BLCOC 5.5 929 8-990397 9 Palmerton Loc 4 75 1 3 TB51206 BLCOC 5.5 929 8-990397 9 Palmerton Loc 4 75 1 3 TB51206 BLCOC 5.5 929 8-990397 9 Palmerton Loc 4 75 1 3 TB51206 BLCOC 5.5 929 8-990397 9 Palmerton Loc 4 75 1 3 TB51206 BLCOC 5.5 929 9-90397 9 Palmerton Loc 4 75 1 3 TB51206 BLCOC 5.5 929 8-990397 9 Palmerton Loc 4 75 1 3 TB51206 BLCOC 5.5 929 8-990397 9 Palmerton Loc 4 75 1 3 TB51206 BLCOC 5.5 929 8-990397 9 Palmerton Loc 4 75 1 3 TB51206 BLCOC 5.5 929 8-990397 10 Palmerton Loc 4 225 3.6 3 TB51206 BLCOC 5.5 929 8-990398 10 Palmerton Loc 4 225 3.8 3 | | | - | | | - | • | • | | | | | 903 8-990403 6 Palmerton Loc 2 75 3.6 3 T951206 8LCOCD 3.6 910 8-90389 6 Palmerton Loc 2 75 2 3 T951206 8LCOCD 2 951 8-990376 6 Palmerton Loc 2 75 1 3 T951206 8LCOCD 0.5 951 8-990373 6 Palmerton Loc 2 75 1.5 3 T951206 8LCOCD 3.4 955 8-990373 6 Palmerton Loc 2 75 1.5 3 T951206 8LCOCD 1.5 908 8-90398 7 Palmerton Loc 2 225 5.5 3 T951206 8LCOCD 1.5 908 8-990398 7 Palmerton Loc 2 225 3.8 3 T951206 8LCOCD 3.8 916 8-990373 6 Palmerton Loc 2 225 3.8 3 T951206 8LCOCD 3.8 916 8-990373 7 Palmerton Loc 2 225 3.8 3 T951206 8LCOCD 3.8 916 8-990377 7 Palmerton Loc 2 225 3.7 3 T951206 8LCOCD 3.8 918 8-990387 7 Palmerton Loc 2 225 3.7 3 T951206 8LCOCD 3.7 922 8-990357 7 Palmerton Loc 2 225 3.7 3 T951206 8LCOCD 3.7 922 8-990350 7 Palmerton Loc 2 225 8.1 3 T951206 8LCOCD 3.7 922 8-990350 7 Palmerton Loc 2 225 8.1 3 T951206 8LCOCD 3.7 922 8-990350 7 Palmerton Loc 2 225 8.1 3 T951206 8LCOCD 6.1 913 8-990404 8 Palmerton Loc 4 25 2.2 3 T951206 8LCOCD 0.5 937 8-990351 8 Palmerton Loc 4 25 1 3 T951206 8LCOCD 0.5 937 8-990353 8 Palmerton Loc 4 25 1 3 T951206 8LCOCD 0.5 937 8-990353 8 Palmerton Loc 4 25 1 3 T951206 8LCOCD 0.5 937 8-990353 8 Palmerton Loc 4 25 1 3 T951206 8LCOCD 0.5 938 8-900375 9 Palmerton Loc 4 25 1 3 T951206 8LCOCD 0.5 939 8-990353 8 Palmerton Loc 4 25 1 3 T951206 8LCOCD 0.5 939 8-990353 8 Palmerton Loc 4 75 1 3 T951206 8LCOCD 0.5 939 8-990354 9 Palmerton Loc 4 75 1 3 T951206 8LCOCD 0.5 939 8-990354 9 Palmerton Loc 4 75 1 3 T951206 8LCOCD 0.5 939 8-990374 9 Palmerton Loc 4 75 1 3 T951206 8LCOCD 0.5 939 8-990374 9 Palmerton Loc 4 75 1 3 T951206 8LCOCD 0.5 939 8-990374 9 Palmerton Loc 4 75 1 3 T951206 8LCOCD 0.5 939 8-990374 9 Palmerton Loc 4 75 1 3 T951206 8LCOCD 0.5 939 8-990374 9
Palmerton Loc 4 75 1 3 T951206 8LCOCD 0.5 939 8-990374 9 Palmerton Loc 4 75 1 3 T951206 8LCOCD 0.5 939 8-990374 9 Palmerton Loc 4 75 1 3 T951206 8LCOCD 0.5 939 8-990374 9 Palmerton Loc 4 75 1 3 T951206 8LCOCD 0.5 939 8-990374 9 Palmerton Loc 4 225 3.6 3 T951206 8LCOCD 3.6 939 8-990374 10 Palmerton Loc 4 225 3.8 3 T951206 8LCOCD 3.8 939 8-9903 | | | | | | • | | | | | | | 910 8-990389 6 Palmerton Loc 2 75 1 3 T951206 BLCOO 2 938 8-990376 5 Palmerton Loc 2 75 1 3 T951206 BLCOO 0.5 951 8-990364 6 Palmerton Loc 2 75 3.4 3 T951206 BLCOO 3.4 955 8-990373 6 Palmerton Loc 2 75 1.5 3 T951206 BLCOO 1.5 908 8-990379 7 Palmerton Loc 2 225 3.8 3 T951206 BLCOO 5.5 908 8-990379 7 Palmerton Loc 2 225 3.8 3 T951206 BLCOO 3.8 916 8-990377 7 Palmerton Loc 2 225 3.8 3 T951206 BLCOO 3.8 918 8-990387 7 Palmerton Loc 2 225 3.7 3 T951206 BLCOO 3.7 918 8-990392 7 Palmerton Loc 2 225 3.7 3 T951206 BLCOO 5.1 918 8-990392 7 Palmerton Loc 2 225 8.1 3 T951206 BLCOO 6.1 918 8-990397 8 Palmerton Loc 2 225 8.1 3 T951206 BLCOO 6.1 919 8-990387 8 Palmerton Loc 4 25 2.2 3 T951206 BLCOO 0.5 932 8-990387 8 Palmerton Loc 4 25 1 3 T951206 BLCOO 0.5 937 8-990383 8 Palmerton Loc 4 25 1 3 T951206 BLCOO 0.5 937 8-990355 8 Palmerton Loc 4 25 1.4 3 T951206 BLCOO 0.5 937 8-990355 8 Palmerton Loc 4 25 1.3 3 T951206 BLCOO 0.5 938 8-990402 9 Palmerton Loc 4 25 1.3 3 T951206 BLCOO 0.5 939 8-990356 9 Palmerton Loc 4 75 3.9 3 T951206 BLCOO 0.5 944 8-990479 9 Palmerton Loc 4 75 3.9 3 T951206 BLCOO 0.5 948 8-990375 9 Palmerton Loc 4 75 1.3 3 T951206 BLCOO 0.5 949 8-990374 9 Palmerton Loc 4 75 1.3 3 T951206 BLCOO 0.5 949 8-990375 9 Palmerton Loc 4 75 1.3 3 T951206 BLCOO 0.5 949 8-990374 9 Palmerton Loc 4 75 1.4 3 T951206 BLCOO 0.5 949 8-990374 9 Palmerton Loc 4 75 1.4 3 T951206 BLCOO 0.5 949 8-990374 9 Palmerton Loc 4 75 1.4 3 T951206 BLCOO 0.5 949 8-990374 9 Palmerton Loc 4 75 1.4 3 T951206 BLCOO 0.5 949 8-990374 9 Palmerton Loc 4 75 1.4 3 T951206 BLCOO 0.5 949 8-990374 9 Palmerton Loc 4 75 1.4 3 T951206 BLCOO 0.5 949 8-990374 9 Palmerton Loc 4 75 1.4 3 T951206 BLCOO 0.5 949 8-990374 9 Palmerton Loc 4 75 1.4 3 T951206 BLCOO 0.5 949 8-990375 10 Palmerton Loc 4 225 3.8 3 T951206 BLCOO 0.5 940 8-990384 10 Palmerton Loc 4 225 3.8 3 T951206 BLCOO 3.9 940 8-990384 10 Palmerton Loc 4 225 3.8 3 T951206 BLCOO 3.9 940 8-990384 10 Palmerton Loc 4 225 3.8 3 T951206 BLCOO 3.8 940 8-990384 10 Palmerton Loc 4 225 3.8 3 T951206 BLCOO 3.8 | 903 | 8-990403 | 6 | | | | | | | | | | 935 | | | | | | | 2 | | | | | | 955 8-990373 6 Palmerton Loc 2 75 1.5 3 T951206 8LOCO 1.5 908 8-990378 7 Palmerton Loc 2 225 5.5 3 T951206 8LOCO 5.5 908 8-990379 7 Palmerton Loc 2 225 3.8 3 T951206 8LOCO 3.8 916 8-990376 7 Palmerton Loc 2 225 4.5 3 T951206 8LOCO 3.8 918 8-990377 7 Palmerton Loc 2 225 3.7 3 T951206 8LOCO 3.7 922 8-990350 7 Palmerton Loc 2 225 8.1 3 T951206 8LOCO 3.7 913 8-990404 8 Palmerton Loc 4 25 2.2 3 T951206 8LOCO 3.7 914 8-990387 8 Palmerton Loc 4 25 1 3 T951206 8LOCO 0.5 937 8-990351 8 Palmerton Loc 4 25 1 3 T951206 8LOCO 0.5 937 8-990353 8 Palmerton Loc 4 25 1 3 T951206 8LOCO 0.5 937 8-990353 8 Palmerton Loc 4 25 1 3 T951206 8LOCO 0.5 938 8-990350 8 Palmerton Loc 4 25 1 3 T951206 8LOCO 0.5 939 8-990351 8 Palmerton Loc 4 25 1 3 T951206 8LOCO 0.5 946 8-990355 8 Palmerton Loc 4 25 1.4 3 T951206 8LOCO 1.3 926 8-990357 9 Palmerton Loc 4 75 3.9 3 T951206 8LOCO 0.5 947 8-990366 9 Palmerton Loc 4 75 1 3 T951206 8LOCO 0.5 948 8-990375 9 Palmerton Loc 4 75 1 3 T951206 8LOCO 0.5 949 8-990374 9 Palmerton Loc 4 75 1 3 T951206 8LOCO 0.5 949 8-990374 9 Palmerton Loc 4 75 1 3 T951206 8LOCO 0.5 940 8-990375 9 Palmerton Loc 4 75 1 3 T951206 8LOCO 0.5 941 8-990374 9 Palmerton Loc 4 75 1 3 T951206 8LOCO 0.5 942 8-990375 10 Palmerton Loc 4 75 3.1 3 T951206 8LOCO 0.5 943 8-990372 10 Palmerton Loc 4 75 3.1 3 T951206 8LOCO 0.5 944 8-990372 10 Palmerton Loc 4 75 3.1 3 T951206 8LOCO 0.5 945 8-990372 10 Palmerton Loc 4 75 3.1 3 T951206 8LOCO 0.5 949 8-990372 10 Palmerton Loc 4 225 3.6 3 T951206 8LOCO 3.6 945 8-990391 10 Palmerton Loc 4 225 3.8 3 T951206 8LOCO 3.9 945 8-990394 10 Palmerton Loc 4 225 3.8 3 T951206 8LOCO 3.9 945 8-990378 10 Palmerton Loc 4 225 3.8 3 T951206 8LOCO 3.8 945 8-990394 10 Palmerton Loc 4 225 3.8 3 T951206 8LOCO 3.8 945 8-990378 10 Palmerton Loc 4 225 3.8 3 T951206 8LOCO 3.8 | | | | | | < | | | | #1.000 | 0.5 | | 908 8-990398 7 Palmerton Loc 2 225 5.5 3 T951206 9LOCO 5.5 908 8-990379 7 Palmerton Loc 2 225 3.8 3 T951206 9LOCO 5.5 916 8-990367 7 Palmerton Loc 2 225 3.8 3 T951206 9LOCO 4.5 918 8-990392 7 Palmerton Loc 2 225 3.7 3 T951206 9LOCO 4.5 918 8-990392 7 Palmerton Loc 2 225 3.7 3 T951206 9LOCO 5.1 913 8-990350 7 Palmerton Loc 2 225 8.1 3 T951206 9LOCO 5.1 914 8-990367 8 Palmerton Loc 4 25 2.2 3 T951206 9LOCO 2.2 914 8-990367 8 Palmerton Loc 4 25 1 3 T951206 9LOCO 5.5 932 8-990361 8 Palmerton Loc 4 25 1 3 T951206 9LOCO 5.5 937 8-990353 8 Palmerton Loc 4 25 1 3 T951206 9LOCO 5.5 937 8-990355 8 Palmerton Loc 4 25 1.4 3 T951206 9LOCO 5.5 946 8-990355 8 Palmerton Loc 4 25 1.4 3 T951206 9LOCO 5.5 947 8-990355 9 Palmerton Loc 4 75 3.9 3 T951206 9LOCO 3.9 926 8-990375 9 Palmerton Loc 4 75 1 3 T951206 9LOCO 5.5 948 8-990366 9 Palmerton Loc 4 75 1 3 T951206 9LOCO 5.5 949 8-990366 9 Palmerton Loc 4 75 1 3 T951206 9LOCO 5.5 949 8-990375 9 Palmerton Loc 4 75 1 3 T951206 9LOCO 5.5 949 8-990376 9 Palmerton Loc 4 75 1 3 T951206 9LOCO 5.5 949 8-990376 9 Palmerton Loc 4 75 1 3 T951206 9LOCO 5.5 949 8-990376 9 Palmerton Loc 4 75 1 3 T951206 9LOCO 5.5 949 8-990376 9 Palmerton Loc 4 75 1 3 T951206 9LOCO 5.5 949 8-990374 9 Palmerton Loc 4 75 1 3 T951206 9LOCO 5.5 949 8-990374 9 Palmerton Loc 4 75 1 3 T951206 9LOCO 5.5 949 8-990374 9 Palmerton Loc 4 75 1 3 T951206 9LOCO 5.5 949 8-990374 9 Palmerton Loc 4 75 1.4 3 T951206 9LOCO 5.5 949 8-990374 9 Palmerton Loc 4 75 5 3.1 3 T951206 9LOCO 5.5 949 8-990374 9 Palmerton Loc 4 75 5 5.9 3 T951206 9LOCO 5.5 940 8-990374 10 Palmerton Loc 4 225 5.9 3 T951206 9LOCO 5.5 941 8-990391 10 Palmerton Loc 4 225 5.9 3 T951206 9LOCO 5.9 949 8-990378 10 Palmerton Loc 4 225 5.9 3 T951206 9LOCO 5.9 949 8-990378 10 Palmerton Loc 4 225 3.8 3 T951206 9LOCO 5.7 940 8-990378 10 Palmerton Loc 4 225 3.8 3 T951206 9LOCO 5.2 941 8-990378 10 Palmerton Loc 4 225 3.8 3 T951206 9LOCO 5.2 942 8-990378 10 Palmerton Loc 4 225 3.8 3 T951206 9LOCO 5.2 944 8-990378 10 Palmerton Loc 4 225 3.8 3 T951206 9LOCO 5.2 945 8-990378 10 Pa | | | | | | | | | | | | | 908 8-990379 7 Paimerton Loc 2 225 3.8 3 T851206 SLCCCC 3.8 916 8-990367 7 Paimerton Loc 2 225 4.5 3 T851206 SLCCCC 4.5 918 8-990382 7 Paimerton Loc 2 225 3.7 3 T851206 SLCCCC 3.7 922 8-990350 7 Paimerton Loc 2 225 8.1 3 T851206 SLCCCC 3.1 913 8-990404 8 Paimerton Loc 4 25 2.2 3 T951206 SLCCCC 0.5 932 8-990361 8 Paimerton Loc 4 25 1 3 T851206 SLCCCC 0.5 937 8-990353 8 Paimerton Loc 4 25 1 3 T851206 SLCCCC 0.5 937 8-990353 8 Paimerton Loc 4 25 1 3 T851206 SLCCCC 0.5 937 8-990355 8 Paimerton Loc 4 25 1.4 3 T851206 SLCCCC 0.5 938 8-990355 8 Paimerton Loc 4 25 1.4 3 T851206 SLCCCC 0.5 939 8-990355 8 Paimerton Loc 4 25 1.3 3 T851206 SLCCCC 0.5 939 8-990355 8 Paimerton Loc 4 25 1.3 3 T851206 SLCCCC 0.5 939 924 8-990365 9 Paimerton Loc 4 75 3.9 3 T851206 SLCCCC 3.9 926 8-990375 9 Paimerton Loc 4 75 1 3 T951206 SLCCCC 0.5 939 8-990366 9 Paimerton Loc 4 75 1 3 T951206 SLCCCC 0.5 939 8-990366 9 Paimerton Loc 4 75 1 3 T951206 SLCCCC 0.5 939 8-990366 9 Paimerton Loc 4 75 1 3 T951206 SLCCCC 0.5 939 8-990366 9 Paimerton Loc 4 75 1 3 T951206 SLCCCC 0.5 939 8-990366 9 Paimerton Loc 4 75 1 3 T951206 SLCCCC 0.5 939 8-990366 9 Paimerton Loc 4 75 1 3 T951206 SLCCCC 0.5 939 8-990366 9 Paimerton Loc 4 75 1 3 T951206 SLCCCC 0.5 939 8-990366 9 Paimerton Loc 4 75 1 3 T951206 SLCCCC 0.5 939 8-990366 9 Paimerton Loc 4 75 1 3 T951206 SLCCCC 0.5 939 8-990366 9 Paimerton Loc 4 75 1 3 T951206 SLCCCC 0.5 939 8-990368 10 Paimerton Loc 4 225 3.6 3 T951206 SLCCCC 0.5 939 8-990368 10 Paimerton Loc 4 225 3.6 3 T951206 SLCCCC 0.5 939 8-990388 10 Paimerton Loc 4 225 3.8 3 T951206 SLCCCC 0.5 944 8-990384 10 Paimerton Loc 4 225 3.8 3 T951206 SLCCCC 0.3 8-990378 10 Paimerton Loc 4 225 3.8 3 T951206 SLCCCC 0.3 8-990378 10 Paimerton Loc 4 225 3.8 3 T951206 SLCCCC 0.3 8-990378 10 Paimerton Loc 4 225 3.8 3 T951206 SLCCCC 0.3 8-990378 10 Paimerton Loc 4 225 3.8 3 T951206 SLCCCC 0.3 8-990378 10 Paimerton Loc 4 225 3.8 3 T951206 SLCCCC 0.3 8-990378 10 Paimerton Loc 4 225 3.8 3 T951206 SLCCCC 0.3 8-990378 10 Paimerton Loc 4 225 3.8 3 T951206 SLCCCC 0.3 8-99037 | | | | | | | | | | | | | 916 8-990367 7 Palmenton Loc 2 225 4.5 3 TB51206 8LOCID 4.5 918 8-990382 7 Palmenton Loc 2 225 3.7 3 TB51206 8LOCID 3.7 922 8-990360 7 Palmenton Loc 2 225 8.1 3 TB51206 8LOCID 8.1 913 8-990404 8 Palmenton Loc 4 25 2.2 3 TB51206 8LOCID 0.5 914 8-990387 8 Palmenton Loc 4 25 1 3 TB51206 8LOCID 0.5 932 8-990361 8 Palmenton Loc 4 25 1 3 TB51206 8LOCID 0.5 937 8-990333 8 Palmenton Loc 4 25 1 3 TB51206 8LOCID 0.5 938 8-990355 8 Palmenton Loc 4 25 1 3 TB51206 8LOCID 0.5 946 8-990355 8 Palmenton Loc 4 25 1.3 3 TB51206 8LOCID 1.4 946 8-990355 8 Palmenton Loc 4 25 1.3 3 TB51206 8LOCID 1.3 924 8-990402 9 Palmenton Loc 4 75 3.9 3 TB51206 8LOCID 0.5 944 8-990366 9 Palmenton Loc 4 75 1 3 T951206 8LOCID 0.5 944 8-990366 9 Palmenton Loc 4 75 1 3 T951206 8LOCID 0.5 948 8-990374 9 Palmenton Loc 4 75 1 3 T951206 8LOCID 0.5 949 8-990364 9 Palmenton Loc 4 76 1.4 3 T951206 8LOCID 0.5 949 8-990375 1 Palmenton Loc 4 76 1.4 3 T951206 8LOCID 0.5 949 8-990374 9 Palmenton Loc 4 76 1.4 3 T951206 8LOCID 0.5 949 8-990374 9 Palmenton Loc 4 76 1.4 3 T951206 8LOCID 0.5 949 8-990374 10 Palmenton Loc 4 75 3.1 3 T951206 8LOCID 3.6 921 8-990391 10 Palmenton Loc 4 225 3.6 3 T951206 8LOCID 3.6 921 8-990394 10 Palmenton Loc 4 225 3.6 3 T951206 8LOCID 3.9 941 8-990384 10 Palmenton Loc 4 225 3.8 3 T951206 8LOCID 3.9 941 8-990384 10 Palmenton Loc 4 225 3.8 3 T951206 8LOCID 3.9 941 8-990384 10 Palmenton Loc 4 225 3.8 3 T951206 8LOCID 3.8 945 8-990384 10 Palmenton Loc 4 225 3.8 3 T951206 8LOCID 3.8 945 8-990384 10 Palmenton Loc 4 225 3.8 3 T951206 8LOCID
3.8 945 8-990388 10 Palmenton Loc 4 225 3.8 3 T951206 8LOCID 3.8 | 908 | | | | | | | | | | | | 918 8-990392 7 Palmenton Loc 2 225 3.7 3 T951206 SLOCID 3.7 922 8-990350 7 Palmenton Loc 2 225 8.1 3 T951206 SLOCID 8.1 913 8-990404 8 Palmenton Loc 4 25 2.2 3 T951206 SLOCID 0.5 914 8-990387 8 Palmenton Loc 4 25 1 3 T951206 SLOCID 0.5 932 8-990361 8 Palmenton Loc 4 25 1 3 T951206 SLOCID 0.5 937 8-990353 8 Palmenton Loc 4 25 1 3 T951206 SLOCID 0.5 946 8-990355 8 Palmenton Loc 4 25 1.3 3 T951206 SLOCID 1.4 946 8-990355 8 Palmenton Loc 4 25 1.3 3 T951206 SLOCID 1.3 924 8-990402 9 Palmenton Loc 4 75 3.9 3 T951206 SLOCID 0.5 948 8-990375 9 Palmenton Loc 4 75 1 3 T951206 SLOCID 0.5 948 8-990376 9 Palmenton Loc 4 75 1 3 T951206 SLOCID 0.5 949 8-990376 9 Palmenton Loc 4 75 1 3 T951206 SLOCID 0.5 949 8-990376 9 Palmenton Loc 4 75 1 3 T951206 SLOCID 0.5 949 8-990376 9 Palmenton Loc 4 75 1 3 T951206 SLOCID 0.5 949 8-990376 9 Palmenton Loc 4 75 1 3 T951206 SLOCID 0.5 949 8-990376 9 Palmenton Loc 4 75 1 4 3 T951206 SLOCID 0.5 949 8-990376 9 Palmenton Loc 4 75 1 4 3 T951206 SLOCID 0.5 949 8-990370 10 Palmenton Loc 4 75 3.1 3 T951206 SLOCID 0.5 949 8-990372 10 Palmenton Loc 4 225 3.6 3 T951206 SLOCID 3.6 921 8-990391 10 Palmenton Loc 4 225 3.6 3 T951206 SLOCID 3.9 939 8-990348 10 Palmenton Loc 4 225 3.9 3 T951206 SLOCID 3.9 941 8-990394 10 Palmenton Loc 4 225 3.8 3 T951206 SLOCID 3.9 941 8-990384 10 Palmenton Loc 4 225 3.8 3 T951206 SLOCID 3.8 945 8-990378 10 Palmenton Loc 4 225 3.8 3 T951206 SLOCID 3.8 | | | | Palmerton Loc 2 | 225 | | | | | | | | 922 8-990350 7 Palmerton Loc 2 225 8.1 3 T951206 BLCCCC 8.1 913 8-990404 8 Palmerton Loc 4 25 2.2 3 T951206 BLCCCC 2.2 914 8-990387 8 Palmerton Loc 4 25 < 1 3 T951206 BLCCCC 0.5 932 8-990361 8 Palmerton Loc 4 25 < 1 3 T951206 BLCCCC 0.5 937 8-990353 8 Palmerton Loc 4 25 1.4 3 T951206 BLCCCC 1.4 946 8-990355 8 Palmerton Loc 4 25 1.3 3 T951206 BLCCCC 1.3 924 8-990402 9 Palmerton Loc 4 75 3.9 3 T951206 BLCCCC 1.3 926 8-990375 9 Palmerton Loc 4 75 < 1 3 T951206 BLCCCC 0.5 948 8-990386 9 Palmerton Loc 4 75 < 1 3 T951206 BLCCCC 0.5 949 8-990374 9 Palmerton Loc 4 75 < 1 3 T951206 BLCCCC 0.5 949 8-990386 9 Palmerton Loc 4 75 < 1 3 T951206 BLCCCC 0.5 949 8-990386 9 Palmerton Loc 4 75 < 1 3 T951206 BLCCCC 0.5 949 8-990386 9 Palmerton Loc 4 75 < 1 3 T951206 BLCCCC 0.5 949 8-990386 9 Palmerton Loc 4 75 3.1 3 T951206 BLCCCC 0.5 949 8-990386 9 Palmerton Loc 4 75 3.1 3 T951206 BLCCCC 0.5 949 8-990386 9 Palmerton Loc 4 75 3.1 3 T951206 BLCCCC 0.5 949 8-990386 9 Palmerton Loc 4 75 3.1 3 T951206 BLCCCC 0.5 949 8-990386 9 Palmerton Loc 4 75 3.1 3 T951206 BLCCCC 0.5 949 8-990386 9 Palmerton Loc 4 75 3.1 3 T951206 BLCCCC 0.5 949 8-990381 10 Palmerton Loc 4 225 3.6 3 T951206 BLCCCC 0.5 949 8-990388 10 Palmerton Loc 4 225 3.9 3 T951206 BLCCCC 0.3 940 8-990388 10 Palmerton Loc 4 225 3.9 3 T951206 BLCCCC 0.3 941 8-990384 10 Palmerton Loc 4 225 3.9 3 T951206 BLCCCC 0.3 941 8-990384 10 Palmerton Loc 4 225 3.8 3 T951206 BLCCCC 0.3 945 8-990388 10 Palmerton Loc 4 225 3.8 3 T951206 BLCCCC 0.3 945 8-990388 10 Palmerton Loc 4 225 3.8 3 T951206 BLCCCC 0.3 945 8-990388 10 Palmerton Loc 4 225 3.8 3 T951206 BLCCCC 0.3 945 8-990388 10 Palmerton Loc 4 225 3.8 3 T951206 BLCCCC 0.3 | | | | | . 225 | | 3.7 | 3 | | | | | 914 8-990387 8 Palmerton Loc 4 25 < 1 3 T851206 8LOCID 0.5 932 8-990361 8 Palmerton Loc 4 25 < 1 3 T851206 8LOCID 0.5 937 8-990353 8 Palmerton Loc 4 25 1.4 3 T851206 8LOCID 1.4 946 8-990355 8 Palmerton Loc 4 25 1.3 3 T851206 8LOCID 1.3 924 8-990402 9 Palmerton Loc 4 75 3.9 3 T851206 8LOCID 0.5 948 8-990375 9 Palmerton Loc 4 75 < 1 3 T951206 8LOCID 0.5 948 8-990376 9 Palmerton Loc 4 75 < 1 3 T951206 8LOCID 0.5 948 8-990374 9 Palmerton Loc 4 75 < 1 3 T951206 8LOCID 0.5 949 8-990374 9 Palmerton Loc 4 75 1.4 3 T951206 8LOCID 0.5 949 8-990374 9 Palmerton Loc 4 75 1.4 3 T951206 8LOCID 0.5 949 8-990374 9 Palmerton Loc 4 75 1.4 3 T951206 8LOCID 0.5 949 8-990374 9 Palmerton Loc 4 75 1.4 3 T951206 8LOCID 0.5 940 8-990374 9 Palmerton Loc 4 75 1.4 3 T951206 8LOCID 0.5 941 8-990372 10 Palmerton Loc 4 75 3.1 3 T951206 8LOCID 3.6 921 8-990372 10 Palmerton Loc 4 225 3.6 3 T951206 8LOCID 3.6 921 8-990391 10 Palmerton Loc 4 225 5.9 3 T951206 8LOCID 3.9 939 8-990348 10 Palmerton Loc 4 225 3.9 3 T951206 8LOCID 3.9 941 8-990384 10 Palmerton Loc 4 225 3.8 3 T951206 8LOCID 3.9 941 8-990384 10 Palmerton Loc 4 225 3.8 3 T951206 8LOCID 3.9 941 8-990384 10 Palmerton Loc 4 225 3.8 3 T951206 8LOCID 3.8 945 8-990378 10 Palmerton Loc 4 225 3.8 3 T951206 8LOCID 3.8 | | | | | | | | | | BLOCO | · 8.1 | | 932 8-990361 8 Palmerton Loc 4 25 1 3 T951206 SLCOOD 0.5 937 8-990353 8 Palmerton Loc 4 25 1.4 3 T951206 BLCOOD 1.4 946 8-990355 8 Palmerton Loc 4 25 1.3 3 T951206 BLCOOD 1.3 924 8-990402 9 Palmerton Loc 4 75 3.9 3 T951206 BLCOOD 0.5 948 8-990375 9 Palmerton Loc 4 75 1 3 T951206 BLCOOD 0.5 949 8-990376 9 Palmerton Loc 4 75 1 3 T951206 BLCOOD 0.5 949 8-990374 9 Palmerton Loc 4 75 1 3 T951206 BLCOOD 0.5 949 8-990374 9 Palmerton Loc 4 75 1.4 3 T951206 BLCOOD 0.5 957 8-990364 9 Palmerton Loc 4 76 3.1 3 T951206 BLCOOD 1.4 957 8-990374 9 Palmerton Loc 4 75 3.1 3 T951206 BLCOOD 1.4 957 8-990374 9 Palmerton Loc 4 75 3.1 3 T951206 BLCOOD 3.1 917 8-990372 10 Palmerton Loc 4 225 3.6 3 T951206 BLCOOD 3.6 921 8-990378 10 Palmerton Loc 4 225 3.9 3 T951206 BLCOOD 5.9 939 8-990384 10 Palmerton Loc 4 225 3.9 3 T951206 BLCOOD 3.9 941 8-990394 10 Palmerton Loc 4 225 3.9 3 T951206 BLCOOD 3.9 941 8-990394 10 Palmerton Loc 4 225 3.8 3 T951206 BLCOOD 3.9 941 8-990384 10 Palmerton Loc 4 225 3.8 3 T951206 BLCOOD 3.8 945 8-990378 10 Palmerton Loc 4 225 3.8 3 T951206 BLCOOD 3.8 | | | | _ | | _ | | | | | | | 937 8-990353 8 Paimerton Loc 4 25 1.4 3 T851206 BLCCO 1.4 946 8-990355 8 Palmerton Loc 4 25 1.3 3 T951206 BLCCO 1.3 924 8-990402 9 Paimerton Loc 4 75 3.9 3 T951206 BLCCO 3.9 926 8-990375 9 Paimerton Loc 4 75 1 3 T951206 BLCCO 0.5 944 8-990366 9 Paimerton Loc 4 75 1 3 T951206 BLCCO 0.5 948 8-990374 9 Paimerton Loc 4 75 1 3 T951206 BLCCO 0.5 949 8-990374 9 Paimerton Loc 4 75 1.4 3 T951206 BLCCO 0.5 947 8-990354 9 Paimerton Loc 4 75 3.1 3 T951206 BLCCO 3.1 957 8-990372 10 Paimerton Loc 4 75 3.1 3 T951206 BLCCO 3.1 917 8-990372 10 Paimerton Loc 4 225 3.6 3 T951206 BLCCO 3.6 921 8-990381 10 Paimerton Loc 4 225 5.9 3 T951206 BLCCO 5.9 939 8-990388 10 Paimerton Loc 4 225 3.9 3 T951206 BLCCO 3.9 941 8-990384 10 Paimerton Loc 4 225 3.9 3 T951206 BLCCO 3.9 941 8-990384 10 Paimerton Loc 4 225 3.8 3 T951206 BLCCO 3.9 941 8-990384 10 Paimerton Loc 4 225 3.8 3 T951206 BLCCO 3.8 945 8-990378 10 Paimerton Loc 4 225 3.8 3 T951206 BLCCO 3.8 | | | | | | | | | | | | | 946 8-990355 8 Palmerton Loc 4 25 1.3 3 T951206 BLCCCD 1.3 924 8-990402 9 Palmerton Loc 4 75 3.9 3 T951206 BLCCCD 3.9 926 8-990375 9 Palmerton Loc 4 75 1 3 T951206 BLCCCD 0.5 944 8-990365 9 Palmerton Loc 4 75 1 3 T951206 BLCCCD 0.5 949 8-990374 9 Palmerton Loc 4 76 1.4 3 T951206 BLCCCD 1.4 957 8-990354 9 Palmerton Loc 4 75 3.1 3 T951206 BLCCCD 1.4 957 8-990372 10 Palmerton Loc 4 225 3.6 3 T951206 BLCCCD 3.6 921 8-990391 10 Palmerton Loc 4 225 5.9 3 T951206 BLCCCD 3.6 921 8-990391 10 Palmerton Loc 4 225 5.9 3 T951206 BLCCCD 5.9 939 8-990348 10 Palmerton Loc 4 225 3.9 3 T951206 BLCCCD 3.9 941 8-990394 10 Palmerton Loc 4 225 3.9 3 T951206 BLCCCD 3.9 941 8-990384 10 Palmerton Loc 4 225 3.8 3 T951206 BLCCCD 3.9 941 8-990384 10 Palmerton Loc 4 225 3.8 3 T951206 BLCCCD 3.8 945 8-990378 10 Palmerton Loc 4 225 225 3.8 3 T951206 BLCCCD 3.8 | | | | | | - | | | | | | | 924 8-990402 9 Palmerton Loc 4 75 3.9 3 T951206 8LOCID 3.9 926 8-990375 9 Palmerton Loc 4 75 1 3 T951206 8LOCID 0.5 944 8-990366 9 Palmerton Loc 4 75 1 3 T951206 8LOCID 0.5 948 8-990374 9 Palmerton Loc 4 75 1.4 3 T951206 8LOCID 0.5 949 8-990374 9 Palmerton Loc 4 75 1.4 3 T951206 8LOCID 1.4 957 8-990375 9 Palmerton Loc 4 75 3.1 3 T951206 8LOCID 3.6 917 8-990372 10 Palmerton Loc 4 225 3.6 3 T951206 8LOCID 3.6 921 8-990391 10 Palmerton Loc 4 225 5.9 3 T951206 8LOCID 5.9 939 8-990384 10 Palmerton Loc 4 225 3.9 3 T951206 8LOCID 3.9 941 8-990384 10 Palmerton Loc 4 225 3.8 3 T951206 8LOCID 3.9 941 8-990384 10 Palmerton Loc 4 225 3.8 3 T951206 8LOCID 3.9 941 8-990384 10 Palmerton Loc 4 225 3.8 3 T951206 8LOCID 3.9 945 8-990378 10 Palmerton Loc 4 225 2.2 3 T951206 8LOCID 3.8 | | | 8 | | | | | | | | | | 926 8-990375 9 Palmerton Loc 4 75 < 1 3 T951206 8LOOD 0.5 944 8-990365 9 Palmerton Loc 4 75 < 1 3 T951206 8LOOD 0.5 948 8-990374 9 Palmerton Loc 4 75 1.4 3 T951206 8LOOD 1.4 957 8-990354 9 Palmerton Loc 4 75 3.1 3 T951206 8LOOD 3.1 917 8-990372 10 Palmerton Loc 4 225 3.6 3 T951206 8LOOD 3.6 921 8-990391 10 Palmerton Loc 4 225 5.9 3 T951206 8LOOD 5.9 939 8-990381 10 Palmerton Loc 4 225 3.9 3 T951206 8LOOD 3.9 941 8-990394 10 Palmerton Loc 4 225 3.9 3 T951206 8LOOD 3.9 941 8-990394 10 Palmerton Loc 4 225 3.8 3 T951206 8LOOD 3.8 945 8-990378 10 Palmerton Loc 4 225 3.8 3 T951206 8LOOD 3.8 | | | | Paimerton Loc 4 | 75 | | | 3 | | | | | 944 8-990366 9 Palmerton Loc 4 75 1 3 T951206 BLCIOD 0.5 949 8-990374 9 Palmerton Loc 4 75 1.4 3 T951206 BLCIOD 1.4 957 8-990354 9 Palmerton Loc 4 75 3.1 3 T951206 BLCIOD 3.1 917 8-990372 10 Palmerton Loc 4 225 3.6 3 T951206 BLCIOD 3.6 921 8-990391 10 Palmerton Loc 4 225 5.9 3 T951206 BLCIOD 5.9 939 8-990381 10 Palmerton Loc 4 225 3.9 3 T951206 BLCIOD 3.9 941 8-990384 10 Palmerton Loc 4 225 3.8 3 T951206 BLCIOD 3.8 941 8-990384 10 Palmerton Loc 4 225 3.8 3 T951206 BLCIOD 3.8 945 8-990378 10 Palmerton Loc 4 225 2.2 3 T951206 BLCIOD 3.8 | | | | | | | | | T951206 | | | | 957 8-990354 9 Paimerton Loc 4 75 3.1 3 T951206 BLOOD 3.1 917 8-990372 10 Paimerton Loc 4 225 3.6 3 T951206 BLOOD 3.6 921 8-990391 10 Paimerton Loc 4 225 5.9 3 T951206 BLOOD 5.9 939 8-990384 10 Paimerton Loc 4 225 3.9 3 T951206 BLOOD 3.9 941 8-990394 10 Paimerton Loc 4 225 3.8 3 T951206 BLOOD 3.8 945 8-990378 10 Paimerton Loc 4 225 2.2 3 T951206 BLOOD 3.8 | | | | | | < | | | | BLOOD | 0.5 | | 917 8-990372 10 Paimerton Loc 4 225 3.6 3 T951206 8LOOD 3.6 921 8-990391 10 Paimerton Loc 4 225
5.9 3 T951206 8LOOD 5.9 939 8-990384 10 Paimerton Loc 4 225 3.9 3 T951206 8LOOD 3.9 941 8-990394 10 Paimerton Loc 4 225 3.8 3 T951206 8LOOD 3.8 945 8-990378 10 Paimerton Loc 4 225 2.2 3 T951206 8LOOD 3.8 | | | | | | | | | | | | | 921 8-990391 10 Palmerton Loc 4 225 5.9 3 T951206 8LCOO 5.9 939 8-990348 10 Palmerton Loc 4 225 3.9 3 T851206 8LCOO 3.9 941 8-990394 10 Palmerton Loc 4 225 3.8 3 T851206 8LCOO 3.8 945 8-990378 10 Palmerton Loc 4 225 2.2 3 T951206 8LCOO 2.2 | | | | | | | | | | | | | 939 8-990348 10 Palmerton Loc 4 225 3.9 3 T951206 BLCCCO 3.9
941 8-990394 10 Palmerton Loc 4 225 3.8 3 T951206 BLCCCO 3.8
945 8-990378 10 Palmerton Loc 4 225 2.2 3 T951206 BLCCCO 2.2 | | | | | | | | | | | | | 941 8-990394 10 Palmerton Loc 4 225 3.8 3 T951206 8LCCOD 3.8
945 8-990378 10 Palmerton Loc 4 225 2.2 3 T951206 8LCCOD 2.2 | | | | Palmerton Loc 4 | | | | | | | | | 945 8-990378 10 Palmerton Loc 4 226 2.2 3 T951206 8LOCO 2.2 | | | | | 225 | | 3.8 | 3 | | | | | 100 16.3 5 T960105 81.00D 16.3 | | | | | | | | | | 9LOOD | 2.2 | | | 50/ | ~ == | ' | 17 | 100 | | 16.3 | Þ | T960105 | BLCCD | 16.3 | - | pig number | sample | group | material administered | dosage qua | lifier lab result (ug/L) | day | source file | MATRIX | Adjusted Value (ug/dL) ^a | | |------------|----------------------|---------------|------------------------------------|------------|--------------------------|--------------|--------------------|-------------------------------------|-------------------------------------|-----| | 912 | 8-990408 | 1 | IV | 100 | 13.7 | 5 | T960105 | | 13.7 | | | 919 | 8-990457 | 1 | IV. | 100 | 15.1 | 5 | T960105 | BFOOD | 15.1 | | | 930
942 | 8-990449 | 1 | N
N | 100 | 14.5 | 5 | T960105 | BLOCO | 14.5 | | | 942
943 | 8-990406
8-990435 | 1 | N
N . | 100 | 15.2 | 5 | T960105 | BLOOD | 15.2 | • | | 953 | 8-990422 | 1 | N . | 100
100 | 13.5
15 | 5
5 | T960105
T960105 | SLOOD
SLOOD | 13.5 | | | 901 | 8-990416 | 2 | Control | | | 5 | T960105 | 81000 | 15
0.5 | | | 902 | 8-990461 | 2 | Control | _ | | 5 | T960105 | BLOCC | 0.5 | | | 920 | 8-990429 | 2 | Control | ò • | ¢ • | 5 | T960105 | BLOOD | 0.5 | _ | | 925 | 8-990413 | Ż | Control | 0 | 0.5 | 5 | T960105 | 81.000 | 0.5 | | | 928 | 8-990444 | 2 | Control | 0 • | • | 5 | T960105 | 81000 | 0.5 | | | 905 | 8-990420 | 3 | PbAc | 25 | 1.2 | 5 | T960105 | BLOOD | 1.2 | | | 909 | 8-990445 | 3 | PbAc | 25 | 1.7 | 5 | T960105 | 8L000 | 1.7 | | | 927
931 | 5-990455
5-990437 | 3
3 | PbAc
PbAc | 25 | 1.4 | 5 | T960105 | #LOOD | 1.4 | | | 940 | 8-990437 | 3 | PbAc | 25
25 | 1.1 | 5 | T960105 | 8,000 | 1.1 | | | 923 | 8-990412 | 4 | PbAc | 25
75 | 1.8
2.2 | 5
5 | T960105
T960105 | BL000
BL000 | 1.8
2.2 · | , | | 933 | 8-990456 | ä | PbAc | 75 | 2.9 | 5 | 1960105 | 81.00D | 2.9 | | | 948 | 8-990458 | 4 | PbAc | 75 | 4.1 | 5 | T960105 | BLOOD | 4.1 | | | 950 | 5-990432 | 4 | PbAc | 75 | 3 | 5 | T960105 | BLOCO | 3 | | | 956 | 8-990426 | 4 | PbAc | 75 | 3.5 | 5 | T960105 | #L000 | 3.5 | | | 911 | 8-990428 | 5 | Palmerton Loc 2 | 25 | 1.7 | 5 | T960105 | 81.000 | 1.7 | | | 929
934 | 8-990460 | 5 | Palmerton Loc 2 | 25 < | · | 5 | T960105 | BLOOD | 0.5 | | | 947 | 8-990454
8-990452 | 5
5 | Palmerton Loc 2 | 25 < | • | 5 | T960105 | BLOCO | 0.5 | | | 954 | 5-990431 | 5 | Paimerton Loc 2
Paimerton Loc 2 | 25
25 | 1.4
1.6 | 5
5 | T960105 | BLOOD | 1.4 | | | 903 | 8-990427 | 6 | Palmerton Loc 2 | 75 | 3 | 5 | T960105
T960105 | 81.000
81.000 | 1.6
3 | | | 910 | 8-990453 | . 6 | Paimerton Loc 2 | 75. | 3.4 | 5 | T960105 | BLOOD | 3.4 | | | 938 | 8-990451 | 6 | Paimerton Loc 2 | 75 | 2.2 | 5 | T960105 | BLOCO | 2.2 | ٠, | | 951 | 8-990415 | 6 | Palmerton Loc 2 | 75 | 6.2 | 5 | T960105 | SLOOD | 6.2 | | | | 8-990436 | 6 | Paimerton Loc 2 | 76 | 3.2 | 5 | T960105 | BLOOD | 3.2 | | | 906 | 8-990447 | 7 | Palmerton Loc 2 | 225 | 6 | 5 | T960105 | BLOOD. | 6 | | | | 8-990405 | 7 | Palmerton Loc 2 | 225 | 6.8 | 5 | T960105 | 81.000 | 6.8 | * | | | 8-990446 | 7 | Palmerton Loc 2 | 225 | 9.1 | 5 | T960105 | #LOOD | 9.1 | | | | 8-990439
8-990424 | 7
7 | Paimenton Loc 2 | 225 | 5.9 | 5 | T960105 | BLOOD | 5.9 | | | | 8-990411 | 8 | Paimerton Loc 2
Paimerton Loc 4 | 225
25 | 8.2
1.5 | 5
5 | T960105 | BLOCO | 8.2 | | | | 8-990440 | 8 | Paimerton Loc 4 | 25 < | | 5 | T960105
T960105 | 81,000
81,000 | 1.6
0.5 | | | | 8-990409 | 8 | Palmerton Loc 4 | 25 | 1.4 | 5 | T960105 | BLOCD | 1.4 | | | 937 | 8-990442 | 8 | Palmerton Loc 4 | 25 | 1.1 | 6 | T960105 | BLOCO | 1.1 | | | 946 | 8-990418 | 8 | Palmerton Loc 4 | 25 | 1.5 | 5 | T960105 | BLOCO | 1.5 | | | | 8-990407 | 9 | Palmerton Loc 4 | 75 | 3.2 | 5 | T960105 | BLOOD | 3.2 | | | | 8-990423 | 9 | Paimerton Loc 4 | 75 | 3 | 5 | T960105 | BLOOD | 3 | | | | 8-990419 | 9 | Palmenton Loc 4 | 75 | 2.6 | 5 | T960105 | BLOOD | 2.6 | | | | 8-990430 | 9 | Palmerton Loc 4 | 75
~~ | 2.8 | 5 | T960105 | 81.000 | 2.8 | | | | 8-990443
8-990450 | 9
10 | Paimenton Loc 4 Paimenton Loc 4 | 75 | 3.1 | 5 | T960106 | 81000 | 3.1 | | | | 8-990421 | 10 | Paimerton Loc 4 | 225
225 | 5.2
4.8 | 5
5 | T960105
T960105 | BLOCO | 5.2 | | | | 8-990438 | 10 | Paimerton Loc 4 | 225 | 5.8 | 5 | T960105 | BLCCC | 4.8
5.8 | | | 941 | 8-990441 | 10 | Paimerton Loc 4 | 225 | 3.6 | 5 | T960105 | 81.000 | 3.6 | | | 945 | 8-990459 | 10 | Palmerton Loc 4 | 225 | 4.2 | 5 | T960105 | BLOCO | 4.2 | | | | 8-990473 | 1 | IV . | 100 | 17.4 | 7 | T960105 | BLOOD . | 17.4 | | | | 8-990510 | 1 | N | 100 | 13.5 | 7 | T960105 | BLOCO | 13.5 | | | | 8-990503
8-990469 | 1 | IV
IV | 100
100 | 17.5 | 7 | T960105 | BLOOD | 17.5 | | | | 8-990507 | i | Ň | 100 | 16.7
15 | 7
7 | T960105
T960105 | 81.000
BL000 | 16.7 | | | | 8-990481 | i | īv | 100 | 13.7 | 7 | T960105 | BLOCO | 15 .
13.7 | | | | 8-990505 | 1 | N | 100 | 16.6 | 7 | T960105 | BLOOD | 16.6 | · | | 901 | 8-990482 | 2 | Control | 0 < | | 7 | T960105 | BLOOD | 0.5 | | | 902 | 8-990480 | 2 | Control | . 0 < | . 1 | 7 | T960105 | BLOCO | 0.5 | | | | 8-990500 | 2 | Control | 0 < | 1 | 7 | T960105 | BLD00 | 0.5 | | | | 8-990504 | 2 | Control | 0 < | • | 7 | T960105 | .8L000 | 0.5 | | | | 8-990491
8-990471 | 2
3 | Control | 0 < | • | 7 | T960105 | 81000 | 0.5 | | | | 8-990499 | 3 | PbAc
PbAc | 25
25 | 1.5 | 7
7 | T960105 | BLOOD | 1.5 | • | | | 8-990485 | 3 | PbAc | 25 | 1.1
2.1 | 7 | T960105
T960105 | BLOCO
BLOCO | 1.1
2.1 | | | | 8-990475 | 3 | PbAc | 25 | 2.1 | 7 | T960105 | SLOOD | 2.1 | | | | 8-990494 | 3 | PbAc | 25 | 1.9 | 7 | T960105 | BLOCO | 1.9 | | | | 8-990496 | 4 | PbAc | . 75 | 2.1 | 7 | T960105 | 81.000 | 2.1 | | | | 8-990472 | 4 | PbAc | 75 | 4.3 | 7 | T960105 | STOOD . | 4.3 | | | | 8-990452 | 4 | PbAc | 75 | 4.5 | 7 | T960105 | 8LOOD | 4.5 | | | | 8-990492 | 4 | PbAc | 75 | 4.9 | 7 | T960105 | BL000 | 4.9 | | | | 8-990493 | 4 | PbAc
Palmodes Los 2 | 75 | 3 | 7 | T960105 | #L000 | 3 | | | | 8-990516
8-990508 | 5
5 | Palmerton Loc 2
Palmerton Loc 2 | 25
25 | 1.4 | 7 | T960105 | 81000 | 1.4 | | | | 8-990497 | 5 | Paimenton Loc 2 | 25 < | 1.1
1 | 7
7 | T960105
T960105 | BLOOD | 1.1 | | | | 8-990478 | 5 | Paimerton Loc 2 | 25 | 1.3 | ź | T960105 | BLDOD | 0.5
1.3 | | | | 8-990513 | 5 | Paimerton Loc 2 | 25 | 1.7 | 7 | T960105 | 81000 | 1.3
1.7 | | | | 8-990512 | 6 | Paimerton Loc 2 | 75 | 2.2 | 7 | T960105 | BLOOD | 2.2 | | | | 8-990466 | 6 | Palmerton Loc 2 | 75 | 3.5 | 7 | T960105 | BLOOD | 3.5 | | | | 8-990477 | 6 | Palmerton Loc 2 | 75 | 3.9 | 7 | T960105 | BL000 | 3.9 | · • | | | 8-990474 | 6 | Palmerton Loc 2 | 75 | 6.4 | 7 | T960105 | Brood | 6.4 | | | | 8-990486 | 6 | Palmerton Loc 2 | 75 | 3.3 | 7 | T960106 | BLOOD | 3.3 | | | | 8-990514
8-990517 | 7
7 | Paimerton Loc 2
Paimerton Loc 2 | 226
225 | 5.5 | 7
7 | T960105 | BLOCO | 5.5 | | | | 8-990463 | 7 | Paimenton Loc 2 | 225 | 4.3
6.2 | 7 | T960105
T960105 | 81.000
81.000 | 4.3
. 6.2 | | | | 8-990488 | 7 | Palmenton Loc 2 | 225 | 5.5 | , | T960105 | BLOOD | 5.5 | | | | 8-990511 | 7 | Paimerton Loc 2 | 225 | 5.4 | 7 | T960106 | 91.000 | 5.4 | | | • | | | | | • | | | e-eestestaanin mattiitiisissississi | ** *** | | | pig number | sample
o xxxxxx | greup | material administered | | lab result (ug/L) | dzy | source file | MATRIX | Adjusted Value (ug/dL)* | |---|--|---|--|--|---|--|--
---|---| | 913 | 8-990509 | 8 | Palmerton Loc 4 | 25 | 1 | 7 | T960105 | BLOCO | . 1 | | 914
932 | 8-990467 | 8 | Paimerton Loc 4 | 25 | 1.3 | 7 | T960105 | STOOD | 1.3 | | 937 | 8-990465
8-990502 | 8 | Paimerton Loc 4 | 25 | 1.8 | 7 | T960105 | 81.000 | 1.8 | | 946 | 8-990484 | 8 | Palmerton Loc 4 Palmerton Loc 4 | 25
25 | 1.4 | 7 | T960105 | BL000 | 1.4 | | 924 | 8-990498 | 9 | Palmerton Loc 4 | 25
75 | 1.4
3.1 | 7
7 | T960105 | BL000 | 1.4 | | 926 | 8-990464 | 9 | Paimerton Loc 4 | 75
75 | 2.4 | 7 | T960105
T960105 | BLOOD | 3.1 | | 944 | 8-990489 | 9 | Palmerton Loc 4 | 75 | 2.9 | 7 | T960105 | BLDOD | 2.4 | | 949 | 8-990476 | 9 | Palmerton Loc 4 | 75 | 3.4 | 7 | T960105 | BLOOD | 2.9
3.4 | | 957 | 8-990495 | 9 | Palmerton Loc 4 | 75 | 2.7 | 7 | T960105 | BLOOD | 2.7 | | 917 | 8-990490 | 10 | Palmerton Loc 4 | 225 | 5.6 | 7 | T960105 | BLOOD | 5.6 | | 921 | 8-990487 | 10 | Paimerton Loc 4 | 225 | 5 | 7 | T960105 | BLOOD . | 5 | | 939 | 8-990501 | 10 | Paimenton Loc 4 | 225 | 4.6 | 7 | T960105 | BLOOD | 4.6 | | 941 | 8-990470 | 10 | Palmerton Loc 4 | 225 | 3.7 | 7 | T960105 | BLOOD | 3.7 | | 945 | 8-990518 | 10 | Palmerton Loc 4 | 225 | 5.9 | 7 | T960105 | BL000 | 5.9 | | 907 | 8-990524 | 1 | IV. | 100 | 20.4 | . 9 | T960105 | BLOOD | 20.4 | | 912
919 | 8-990562
8-990553 | 1 | N
N | 100 | 16.8 | 9 | T960105 | #LOC0 | 16.8 | | 930 | 8-990557 | i | IV
IV | 100
100 | 1 7.7
17.1 | 9 | T960105 | 81,000 | 17.7 | | 942 | 8-990566 | i | N N | 100 | 16.9 | 9 | T960105
T960105 | BLOOD | 17.1 | | 943 | 8-990575 | i | Ň | 100 | 15.5 | 9 | T960105 | BLOOD
BLOOD | 16.9 | | 953 | 8-990520 | 1 | i. | 100 | 17.3 | ğ | T960105 | 91,000 | 15.5
17.3 | | 901 | 8-990556 | 2 | Control | ···· | 1 | 9 | T960105 | BLOOD | 17.3
0.5 | | 902 | 8-990535 | 2 | Control | ŏ < | 1 | 9 | T960105 | BLOCO | 0.5 | | 920 | 8-990572 | 2 | Control | 0 < | 1 | 9 | T960105 | BLOCO | 0.5 | | 925 | 8-990555 | 2 | Control | 0 <> | 1 | 9 | T960105 | BLOOD | 1 | | 928 | 8-990560 | 2 | Control | ó < | 1 | 9 | T960105 | BLOOD | 0.5 | | 905 | 8-990546 | 3 | PbAc | 25 | 1.8 | 9 | T960105 | BLOCO | 1.8 | | 909 | 8-990565 | 3 | PbAc | 25 | 2.3 | 9 | T960105 | BL000 | 2.3 | | 927 | 8-990540 | 3 | PbAc | 25 | 1.7 | 9 | T960106 | 81,000 | 1.7 | | 931 | 8-990538 | 3 | PbAc | 25 | 2.7 | 9 | T960105 | BLOOD | 2.7 | | 940
923 | 8-990545 | 3 | PbAc | 25 | 2 | 9 | T960105 | 81.000 | 2 | | 923
933 | 8-990530
8-990569 | • | PbAc | 75 | 2.2 | 9 | T960105 | BLCCC | 2.2 | | 948 | 8-990573 | • | PbAc
PbAc | 75
75 | 3.8 | 9 | T960105 | 8L000 | 3.8 | | 950 | 8-990532 | 7 | PbAc | 75
75 | 5.7 | 9 | T960105 | 8LOOD | 5.7 | | 956 | 8-990554 | 4 | PbAc. | 75
75 | 3
3.8 | 9 | T960105 | BLOOD | 3 | | 911 | 8-990567 | 5 | Palmerton Loc 2 | 25 | 1.2 | 9 | T960105
T960105 | BLOOD
BLOOD | 3.8 | | 929 | 8-990528 | 5 | Palmerton Loc 2 | 25 | 1 | 9 | T960105 | 81000 | 1.2 | | 934 | 8-990529 | 5 | Palmerton Loc 2 | 25 < | i | 9 | T960105 | 81,000 | 1
0.5 | | 947 | 8-990542 | 5 | Palmerton Loc 2 | 25 | 1.1 | 9 | T960105 | BL000 | 1.1 | | 954 | 8-990522 | 5 | Paimerton Loc 2 | 25 | 2.2 | ğ | T960105 | BLOOD | 2.2 | | 903 | 8-990539 | 6 | Palmerton Loc 2 | 75 | 2.8 | 9 | T960105 | SLOOD | 2.8 | | 910 | 8-990574 | 6 | Palmerton Loc 2 | 75 | 3.8 | 9 | T960105 | 81,000 | 3.8 | | 938 | 8-990544 | 6 | Paimerton Loc 2 | 75 | 3.9 | 9 | T960105 | BLOCO | 3.9 | | 951 | 8-990543 | 6 | Paimenton Loc 2 | 75 | 6.7 | 9 | T960105 | BLOOD | 6.7 | | 955 | 8-990552 | 6 | Palmerton Loc 2 | 75 | 3.6 | 9 | T960105 | 81.000 | 3.6 | | 906
908 | 8-990561
8-990521 | 7
7 | Palmerton Loc 2 | 225 | 6.4 | 9 | T960105 | BLOCC | 6.4 | | 916 | 8-990531 | 7 | Palmerton Loc 2 | 225 | 4.7 | 9. | T960105 | #LOCO | 4.7 | | 918 | 8-990534 | 7 | Paimerton Loc 2
Paimerton Loc 2 | 225
225 | 6.3 | 9 | T960105 | BLOOD | 6.3 | | 922 | 8-990547 | 7 | Paimenton Loc 2 | 225 | 4.8
5.8 | 9 | T960105 | 81.000 | 4.8 | | 913 | 8-990551 | 8 | Palmerton Loc 4 | 25 | 1.6 | 9 | T960105
T960105 | BLOCO | 5.8 | | 914 | 8-990558 | 8 | Palmerton Loc 4 | 25 | 1.9 | 9 | T960105 | #LOCO | 1.6 | | 932 | 8-990533 | 8 | Palmerton Loc 4 | 25 | 1 | • | T960105 | BLOCO | 1. 9
1 | | 937 | 8-990526 | 8 | Paimerton Loc 4 | 25 < | i | 9 | T960105 | BLOCO | 0.5 | | 946 | 8-990537 | 8 | Palmerton Loc 4 | 25 | 1.2 | 9 | T960105 | B.000 | 1.2 | | 924 | 8-990568 | 9 | Palmenton Loc 4 | 75 | 2.9 | 9 | T960105 | 84.000 | 2.9 | | 926 | 8-990550 | 9 | Palmerton Loc 4 | 75 | 1.8 | 9 | T960105 | BLOOD | 1.8 | | 944 | 8-990559 | 9 | Palmerton Loc 4 | 75 | . 2 | 9 | T960105 | BLOOD | 2 | | 949 | 8-990549 | 9 | Palmerton Loc 4 | 75 | 2.6 | 9 | T960105 | BLCCCC | 2.6 | | 957 | 8-990519 | 9 | Paimerton Loc 4 | 75 | 4.2 | 9 | T960105 | ercco | 4.2 | | 917 | 8-990563 | 10 | Palmerton Loc 4 | 225 | 8.3 | 9 | T960105 | BLOOD | -8.3 | | 921
939 | 8-990525
8-990536 | 10
10 | Palmerton Loc 4 | 225 | 4.2 | 9 | T960105 | BLOCO | 4.2 | | | 8-990523 | 10 | Palmerton Loc 4 | 225
225 | 6 | 9 | T960105 | HL000 | 6 | | 945 | 8-990548 | 10 | Paimerton Loc 4 Paimerton Loc 4 | 225
225 | 4.5
5.4 | 9 | T960105 | 81.000 | 4.5 | | F | 8-990623 | 1 | IV | 100 | | | T960105 | 81000 | 5.4 | | | 8-990630 | i | N. | 100 | 21.9
16 | 12
12 | T960105 | BLOOD | 21.9 | | M12 | | i | N. | 100 | 16.7 | 12 | T960105
T960105 | BLOCO
BLOCO | 16 | | | 5-MMU624 | | Ň | 100 | 17.2 | 12 | T960105 | 81000 | 16.7 | | 919 | 8-990624
8-990618 | 1 | | | 18.7 | 12 | | | 17.2 | | 919
930 | 8-990618
8-990601 | 1 | īV | 100 | | | T960105 | CONTROL OF THE PARTY OF THE PROPERTY OF THE PARTY | | | 919
930
942 | 8-990618 | | | 100
1 0 0 | | | T960105
T960105 | BLOOD | 18.7
14.9 | | 919
930
942
943 | 8-990618
8-990601 | 1 | IV | | 14.9
18 | .12 | T960105 | BLOCO | 14.9 | | 919
930
942
943
953
901 | 8-990618
8-990601
8-990584
8-990616
8-990598 | 1
1
1
2 | IV | 100 | 14.9 | | | BL000 | 14.9
18 | | 919
930
942
943
953
901
902 | 8-990618
8-990601
8-990584
8-990516
8-990598
8-990606 | 1
1
1
2
2 | IV
IV
IV | 100
100 | 14.9
18 | . 12
12 | T960105
T960105 | BL000
BL000
BL000 | 14.9
18
0.5 | | 919
930
942
943
953
901
902
920 | 8-990618
8-990601
8-990584
8-990598
8-990598
8-990606
8-990577 | 1
1
1
2
2
2 | IV
IV
IV
Control | 100
100
0 < | 14.9
16
1 | 12
12
12 | T960105
T960105
T960106 | BL000 | 14.9
18
0.5
0.5 | | 919
930
942
943
953
901
902
920
925 | 8-990618
8-990601
8-990584
8-990616
8-990598
8-990606
8-990577
8-990629 | 1
1
1
2
2
2
2 | IV IV Control Control Control Control | 100
100
0 <
0 <
0 < | 14.9
18
1
1
1
1 | 12
12
12
12
12
12 | T960105
T960105
T960105
T960105 | BLOCO
BLOCO
BLOCO
BLOCO | 14.9
18
0.5 | | 919
930
942
943
953
901
902
920
925
928 | 8-990618
8-990601
8-990584
8-990616
8-990598
8-990606
8-990577
8-990629
8-990605 | 1
1
1
2
2
2
2
2
2 | IV IV IV Control Control Control Control Control | 100
100
0 <
0 <
0 <
0 < | 14.9
18
1
1
1
1
1 | 12
12
12
12
12
12
12 | T960105
T960105
T960106
T960106
T960105
T960105
T960105 | BLOOD
BLOOD
BLOOD
BLOOD
BLOOD | 14.9
18
0.5
0.5
0.5 | | 919
930
942
943
953
901
902
920
920
925
928
905 | 8-990618
8-990601
8-990584
8-990616
8-990598
8-990606
8-990677
8-990629
8-990605
8-990621 | 1
1
2
2
2
2
2
2
2
2
3 | IV IV IV
Control Control Control Control Control Control PbAc | 100
100
0 <
0 <
0 <
0 <
25 | 14.9
18
1
1
1
1
1 | 12
12
12
12
12
12
12
12 | T960105
T960105
T960106
T960106
T960105
T960105
T960105
T960105 | BLCCCC
BLCCCC
BLCCCC
BLCCCC
BLCCCC
BLCCCC
BLCCCC
BLCCCC
BLCCCC
BLCCCC
BLCCCC | 14.9
18
0.5
0.5
0.5
0.5 | | 919
930
942
943
953
901
902
920
925
928
905
909 | 8-990618
8-990601
8-990584
8-990516
8-990598
8-990606
8-9906077
8-990629
8-990605
8-990621
8-990678 | 1
1
1
2
2
2
2
2
2
2
2
3
3 | IV IV IV Control Control Control Control Control PbAc PbAc | 100
100
0 <
0 <
0 <
0 <
25
25 | 14.9
18
1
1
1
1
1
1.4
3.6 | 12
12
12
12
12
12
12
12
12 | T960105
T960105
T960105
T960105
T960105
T960105
T960105
T960105
T960105 | BLOOD
BLOOD
BLOOD
BLOOD
BLOOD
BLOOD
BLOOD
BLOOD
BLOOD
BLOOD
BLOOD
BLOOD
BLOOD | 14.9
18
0.5
0.5
0.5
0.5
0.5 | | 919
930
942
943
953
901
902
920
925
928
905
909
927 | 8-990618
8-990501
8-990584
8-990586
8-990616
8-990606
8-990607
8-990629
8-990629
8-990621
8-990621
8-990604 | 1
1
1
2
2
2
2
2
2
2
3
3
3 | IV IV IV Control Control Control Control Control PbAc PbAc PbAc | 100
100
0 <
0 <
0 <
0 <
25
25
25 | 14.9
18
1
1
1
1
1
1.4
3.6
1.5 | 12
12
12
12
12
12
12
12
12 | T960105 | BLOOD
BLOOD
BLOOD
BLOOD
BLOOD
BLOOD
BLOOD
BLOOD
BLOOD
BLOOD
BLOOD | 14.9
18
0.5
0.5
0.5
0.5
0.5
1.4
3.6
1.5 | | 919
930
942
943
953
901
902
920
925
928
905
909
927
931 | 8-990618
8-990601
8-990584
8-990616
8-990598
8-990606
8-990577
8-990622
8-990605
8-990621
8-990604
8-990589 | 1
1
1
2
2
2
2
2
2
2
3
3
3 | IV IV IV Control Control Control Control Control Control PbAc PbAc PbAc PbAc | 100
100
0 | 14.9
18
1
1
1
1
1
1.4
3.6
1.5
2.6 | 12
12
12
12
12
12
12
12
12
12 | T960105 T960105 T960106 T960105 T960105 T960105 T960105 T960105 T960105 T960105 T960105 T960105 | BLOOD
BLOOD
BLOOD
BLOOD
BLOOD
BLOOD
BLOOD
BLOOD
BLOOD
BLOOD
BLOOD
BLOOD
BLOOD
BLOOD
BLOOD
BLOOD
BLOOD
BLOOD | 14.9
18
0.5
0.5
0.5
0.5
0.5
1.4
3.6
1.5
2.6 | | 919
930
942
943
953
901
902
920
925
928
905
909
927
931
940 | 8-990618
8-990601
8-990584
8-990516
8-990598
8-990606
8-990607
8-990629
8-990629
8-990628
8-990648
8-990648
8-990604 | 1
1
1
2
2
2
2
2
2
2
3
3
3 | IV IV IV Control Control Control Control Control PbAc PbAc PbAc PbAc PbAc PbAc | 100
100
0 <
0 <
0 <
0 <
25
25
25
25
25 | 14.9
18
1
1
1
1
1
1.4
3.6
1.5
2.6 | 12
12
12
12
12
12
12
12
12
12
12 | T960105 T960105 T960106 T960105 T960105 T960105 T960105 T960105 T960105 T960105 T960105 T960105 | BLOOD | 14.9
18
0.5
0.5
0.5
0.5
1.4
3.6
1.6
2.6
2.4 | | 919
930
942
943
953
901
902
920
925
928
905
909
927
931
940
923 | 8-990618
8-990601
8-990584
8-990516
8-990506
8-990606
8-990607
8-990605
8-990601
8-990604
8-990604
8-990604
8-990604
8-990602
8-990602 | 1
1
1
2
2
2
2
2
2
2
3
3
3 | IV IV IV Control Control Control Control Control PbAc PbAc PbAc PbAc PbAc | 100
100
0 <
0 <
0 <
0 <
25
25
25
25
25
25 | 14.9
18
1
1
1
1
1
1.4
3.6
1.5
2.8
2.4
2.7 | 12
12
12
12
12
12
12
12
12
12
12
12 | T960105
T960105
T960105
T960105
T960105
T960105
T960105
T960105
T960105
T960105
T960105
T960105 | BL000
BL000
BL000
BL000
BL000
BL000
BL000
BL000
BL000
BL000
BL000
BL000 | 14.9
18
0.5
0.5
0.5
0.5
1.4
3.6
1.5
2.4
2.7 | | 919
930
942
943
953
901
902
920
925
928
905
909
927
931
940
923
933 | 8-990618
8-990601
8-990584
8-990586
8-990598
8-990606
8-990607
8-990629
8-990629
8-990628
8-990648
8-990648
8-990604 | 1
1
1
2
2
2
2
2
2
2
3
3
3 | IV IV IV Control Control Control Control Control PbAc PbAc PbAc PbAc PbAc PbAc | 100
100
0 <
0 <
0 <
0 <
25
25
25
25
25 | 14.9
18
1
1
1
1
1
1.4
3.6
1.5
2.6 | 12
12
12
12
12
12
12
12
12
12
12 | T960105 T960105 T960106 T960105 T960105 T960105 T960105 T960105 T960105 T960105 T960105 T960105 | BLOOD | 14.9
18
0.5
0.5
0.5
0.5
1.4
3.6
1.6
2.6
2.4 | . - | pig number | sample | group | material administered | dosage qu | alifier | lab result (ug/L) | day | source file | MATRIX | Adjusted Value (ug/dL)* | |------------|----------------------|----------|------------------------------------|-------------|---------|-------------------|----------|--------------------|----------------|-------------------------| | 956 | 8-990596 | 4 | PbAc | 75 | | 4.7 | 12 | T960105 | 8L.000 | 4.7 | | 911 | 8-990620 | 5 | Paimerton Loc 2 | 25 | | 2.6 | 12 | T960105 | 8LOOD | 2.6 | | 929 | 8-990611 | 5 | Palmerton Loc 2 | 25 | | 1.7 | 12 | T960105 | BLOOD | 1.7 | | 934 | 8-990586 | 5 | Palmerton Loc 2 | 25 | | 2.6 | 12 | T960105 | BLOOD | 2.6 | | 947 | 8-990610 | 5 | Paimerton Loc 2 | 25 | < | 1 | 12 | T960105 | BLOOD | 0.5 | | 954
903 | 8-990585
8-990592 | 5 | Palmerton Loc 2 | 25 | | 1.6 | 12 | T960105 | Srcop | 1.6 | | 910 | 8-990615 | 6
6 | Palmerton Loc 2
Palmerton Loc 2 | 75
75 | | 2.5
5.9 | 12
12 | T960105
T960105 | 81.000 | 2.5
5.9 | | 938 | 8-990619 | 6 | Palmenton Loc 2 | 75
75 | | 3.8 | 12 | T960105 | BLOOD
BLOOD | 3.8 | | 951 | 8-990612 | 6 | Palmerton Loc 2 | 75 | | 6 | 12 | T960105 | BLOOD | 6 | | 955 | 8-990593 | 6 | Paimerton Loc 2 | 75 | | 6.5 | 12 | T960105 | BLOCD | 6.5 | | 906 | 8-990579 | 7 | Palmerton Loc 2 | 225 | | 7.1 | 12 | T960105 | BLDCC | 7.1 | | 908 | 8-990632 | 7 | Palmerton Loc 2 | 225 | | 4.3 | 12 | T960105 | BLOOD | 4.3 | | - 916 | 8-990576 | 7 | Palmerton Loc 2 | 225 | | 6.4 | 12 | T960105 | 8LCCD | 6.4 | | 918 | 8-990628 | 7 | Paimerton Loc 2 | 225 | | 6.1 | 12 | T960105 | 8LOOD | 6.1 | | 922 | 8-990608 | 7 | Paimerton Loc 2 | 225 | | 5.6 | 12 | T960105 | BLOOD | 5.6 | | 913 | 8-990609 | | Paimerton Loc 4 | 25 | | 1.7 | 12 | T960105 | BLOOD | 1.7 | | 914
932 | 8-990614
8-990590 | 8
8 | Paimerton Loc 4 Paimerton Loc 4 | 25
25 | | 1.6
1.9 | 12
12 | T960105
T960105 | 84,000 | 1.6
1.9 | | 937 | 8-990588 | 8 | Palmenton Loc 4 | 25
25 | | 1.9 | 12 | 7960105 | BLOOD | 1.9 | | 946 | 8-990622 | ă | Palmerton Loc 4 | 25 | | 2.3 | 12 | T960105 | BLOOD | 2.3 | | 924 | 8-990631 | ğ | Paimerton Loc 4 | 75 | | 3.7 | 12 | T960105 | BLOOD | 3.7 | | 926 | 8-990600 | . 9 | Palmerton Loc 4 | 75 | | 2.4 | 12 | T960105 | BLOOD | 2.4 | | 944 | 8-990594 | 9 | Palmerton Loc 4 | 75 | | 1.5 | 12 | T960105 | BLOOD | 1.5 | | 949 | 8-990583 | 9 | Palmerton Loc 4 | 75 | | 3.3 | 12 | T960105 | #LCCC | 3.3 | | 957 | 8-990582 | 9 | Palmerton Loc 4 | 75 | | 3.2 | 12 | T960105 | #LOOD | 3.2 | | 917 | 8-990617 | 10 | Palmerton Loc 4 | 225 | | 8.4 | 12 | T960105 | BLOOD | 8.4 | | 921 | 8-990603 | 10 | Paimenton Loc 4 | 225 | | 4.9 | 12 | T960105 | BLOCO | 4.9 | | 939 | 8-990613 | 10 | Palmerton Loc 4 | 225 | | 5.8 | 12 | T960105 | BLOCO | 5.8 | | 941
945 | 8-990581
8-990599 | 10
10 | Palmerton Loc 4
Palmerton Loc 4 | 225
225 | | 4.2
6.4 | 12
12 | T960105
T960105 | BLOOD | 4.2
6.4 | | 907 | 8-990664 | 1 | IV | 100 | | 22 | 15 | T960105 | BLOOD | 22 | | 912 | 8-990688 | i | īv | 100 | | 15.7 | 15 | T960105 | BLOCO | 15.7 | | 919 | 8-990685 | i | iv
IV | 100 | | 17 | 15 | T960105 | 81.000 | 17 | | 930 | 8-990634 | 1 | N | 100 | | 17.5 | 15 | T960105 | 81.000 | 17.5 | | 942 | 8-990689 | 1 | N | 100 | | 18.7 | 15 | T960105 | BLOCO | 18.7 | | 943 | 8-990684 | 1 | N | 100 | | 15.5 | 15 | T960105 | BLOOD | 15.5 | | 953 | 8-990681 | 1 | ₽ | 100 | | 19,5 | 15 | T960105 | SLOOD | 19.5 | | 901 | 8-990677 | 2 | Control | 0 | < ' | 1 | 15 | T960105 | SFOOD | 0.5 | | 902 | 8-990671 | 2 | Control | 0 | < | 1 | 15 | T960105 | BLOCD | 0.5 | | 920 | 8-990670 | 2 | Control | 0 | < | 1 | 15 | T960105 | BLDOO | 0.5 | | 925
928 | 8-990651
8-990675 | 2
2 | Control
Control | 0 | ٠ | 1 | 15
15 | T960105
T960105 | 8L000 | 0.5 | | 905 | 8-990648 | 3 | PbAc | 25 | • | 1.8 | 15 | T960105 | BLOOD | 0.5
1.8 | | 909 | 8-990639 | 3 | PbAc | 25 | | 2.2 | 15 | T960105 | BL000 | 2.2 | | 927 | 8-990647 | 3 | PbAc | 25 | | 2.8 | 15 | T960105 | BLOOD | 2.8 | | 931 | 8-990667 | 3 | PbAc | 25 | | 2.1 | 15 | T960105 | \$LOO D | 2.1 | | 940 | 8-990674 | 3 | PbAc | 25 | | 3.1 | 15 | T960105 | BLOCO | 3.1 | | 923 | 8-990661 | 4 | PbAc | 75 | | 5.9 | 15 | T960105 | BL000 | 5.9 | | 933 | 8-990686 | 4 | PbAc | 75 | | 7 | 15 | T960105 | SLOOD | 7 | | 948 | 8-990649 | 4 | PbAc | 75 | | 6.9 | 15 | T960105 | BLOOD | 6.9 | | 950 | 8-990683
8-990680 | 4 | PbAc | 75
 | | 4.9 | 15 | T960105 | BLOOD | 4.9 | | 956
911 | 8-990655 | 5 | PbAc
Palmerton Loc 2 | 75
25 | | 5.4 | 15 | T960105 | BLOOD
BLOOD | 5.4 | | 929 | 8-990682 | 5 | Palmerton Loc 2 | 25
25 | | 2.4
3 |
15
15 | T960105
T960105 | BLOOD | 2.4
3 | | 934 | 8-990654 | 5 | Palmerton Loc 2 | 25 | | 2.2 | 15 | T960105 | 81.000 | 2.2 | | 947 | 8-990637 | 5 | Palmerton Loc 2 | 25 | | 2.1 | 15 | T960105 | 81.000 | 2.1 | | 954 | 8-990653 | 5 | Palmerton Loc 2 | 25 | | 2.4 | 15 | T960105 | BLOOD | 2.4 | | 903 | 8-990652 | 6 | Palmerton Loc 2 | ¹ 75 | | 3.2 | 15 | T960105 | SLOO D | 3.2 | | 910 | 8-990640 | 6 | Palmerton Loc 2 | 75 | | 5.6 | 15 | T960105 | 8L000 | 5.6 | | 938 | 8-990645 | - 6 | Palmerton Loc 2 | 75 | | 4.3 | 15 | T960105 | BL000 | 4.3 | | 951 | 8-990656 | . 6 | Paimerton Loc 2 | 75 | | <u>6</u> . | 15 | T960105 | SLOOD | 6 | | 955
966 | 8-990643 | 6 | Palmerton Loc 2 | 75 | | 3.7 | 15 | T960105 | 81000 | 3.7 | | 906
908 | 8-990650
8-990665 | 7
7 | Palmerton Loc 2
Palmerton Loc 2 | 225
225 | | 7
4.4 | 15
15 | T960105
T960105 | BLOCO
BLOCO | 7
4.4 | | 916 | 8-990635 | 7 | Palmerton Loc 2 | 225 | | 7.9 | 15 | T960105 | BLOOD | 7.9 | | 918 | 8-990663 | 7 | Paimerton Loc 2 | 225 | | 6.7 | 15 | T960105 | 81.000 | 6.7 | | 922 | 8-990659 | 7 | Palmerton Loc 2 | 225 | | 6.3 | 15 | T960105 | BLOCO | 6.3 | | 913 | 8-990668 | 8 | Paimerton Loc 4 | 25 | | 2.4 | 15 | T960105 | BL000 | 2.4 | | 914 | 8-990657 | 8 | Palmerton Loc 4 | 25 | | 2.2 | 15 | T960105 | BLOOD | 2.2 | | 932 | 8-990633 | 8 | Paimerton Loc 4 | 25 | | 2.1 | 15 | T960105 | 81.000 | 2.1 | | 937 | 8-990658 | 8 | Palmerton Loc 4 | 25 | | 2.2 | 15 | T960106 | BLOOD | . 2.2 | | 946 | 8-990678 | 8 | Palmerton Loc 4 | 25 | | 3.2 | 15 | T960105 | #LOCO | 3.2 | | 924 | 8-990636 | 9 | Palmerton Loc 4 | 75 | | 4.1 | 16 | T960105 | 81.00D | 4.1 | | 926 | 8-990666 | 9 | Palmerton Loc 4 | 75 | | 3.5 | 15 | T960105 | BLOOD | 3.5 | | 944
949 | 8-990544
8-990659 | 9
9 | Paimerton Loc 4 Paimerton Loc 4 | 75
75 | | 2.6
· 3 | 15
15 | T960105 | BLOCO
BLOCO | 2.6 | | 957 | 8-990676 | . 9 | Paimerton Loc 4 | 75
75 | | 4.4 | 15 | T960105
T960105 | 81000 | 3
4.4 | | 917 | 8-990679 | 10 | Palmerton Loc 4 | 225 | | 9.1 | 15 | T960105 | 81.00D | 9.1 | | 921 | 8-990660 | 10 | Paimerton Loc 4 | 225 | | 6.7 | 15 | T960105 | BLOCO | 6.7 | | 939 | 8-990662 | 10 | Palmerton Loc 4 | 225 | | 5.7 | 15 | T960105 | BLOOD | 5.7 | | 941 | 8-990638 | 10 | Paimerton Loc 4 | 225 | | 4.7 | 15 | T960105 | BLOOD | 4.7 | | 945 | 8-990646 | 10 | Palmerton Loc 4 | 225 | | €.5 | 15 | T960105 | 81,000 | 6.5 | | | | | | | | | | | | | a Non-detects evaluated using 1/2 the quantitation limit, laboratory results (ug/L) converted to concentration in blood (ug/dL) by dividing by dilution factor of 1 dL/L TABLE A-4 BLOOD LEAD OUTLIERS Flagged Data Points Outliers (none selected) | test | target | Actual | | BLOOD LEAD (ug/dL) BY DAY | | | | | | | | | | | |-----------------|------------|--------|-------|---------------------------|-----|------------|------|------------|-----------------|------------|------------|--|------|----------| | material | dosage | Dose* | group | pig# | 4 | 0 | 1 | 2 | 3 | 5 | 7 | 9 | 12 | 15 | | N | 100 | 119.50 | 1 | 907 | 0.5 | 0.5 | 12 | 13.3 | 14.2 | 16.3 | 17.4 | 20.4 | 21.9 | 22 | | IV | 100 | 99.13 | 1 | 912 | 0.5 | 0.5 | 10.7 | 10.9 | 12.6 | 13.7 | 13.5 | 16.8 | 16 | 15.7 | | N | 100 | 113.67 | 1 | 919 | 0.5 | 0.5 | 9.7 | 12 | 11.9 | 15.1 | 17.5 | 17.7 | 16.7 | 17 | | N | 100 | 108.87 | 1 | 930 | 0.5 | 0.5 | 11.1 | 12.1 | . 13.5 | 14.5 | 16.7 | 17.1 | 17.2 | 17.5 | | N | 100 | 101.49 | 1 | 942 | 0.5 | 0.5 | 9.2 | 10.4 | 12.9 | 15.2 | 15 | 16.9 | 18.7 | 18.7 | | IV. | 100 | 94.26 | 1 | 943 | 0.5 | 1.3 | 9.3 | 9.2 | 10.8 | 13.5 | 13.7 | 15.5 | 14,9 | 15.5 | | IV | 100 | 102.35 | 1 | 953 | 0.5 | 0.5 | 9.7 | 12.4 | 15.1 | 15 | 16.6 | 17.3 | 18 | 19.5 | | Control | 0 | 0.00 | 2 | 901 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | | Control | 0 | 0.00 | 2 | 902 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | | Control | 0 | 0.00 | 2 | 920 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | | Control | 0 | 0.00 | 2 | 925 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 1 | 0.5 | 0.5 | | Control | 0 | 0.00 | 2 | 928 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | | PbAc | 25 | 22.15 | 3 | 905 | 0.5 | 0.5 | 0.5 | 0.5 | 1.8 | 1,2 | 1.5 | 1.8 | 1.4 | 1.8 | | PbAc | 25 | 23.78 | 3 | 909 | 0.5 | 0.5 | 0.5 | 1 | 0.5 | 1.7 | 1.1 | 2.3 | 3.6 | 2.2 | | PbAc | 25 | 24.52 | 3 | 927 | 0.5 | 0.5 | 1.2 | 0.5 | 0.5 | 1.4 | 2.1 | 1.7 | 1.5 | 2.2 | | PbAc | 25 | 26.64 | 3 | 931 | 0.5 | 0.5 | 1.4 | 1.1 | 1.3 | 1.1 | 2.1 | 2.7 | 2.6 | 2.1 | | PbAc | 25 | 27.18 | 3 | 940 | 0.5 | 0.5 | 0.5 | 1.6 | 1.4 | 1.8 | 1.9 | 2.7 | 2.4 | 3.1 | | PbAc | 75 | 88.61 | 4 | 923 | 0.5 | 0.5 | 0.5 | 2.1 | 1.3 | 2.2 | 2.1 | 2.2 | 27 | 5.9 | | PbAc | 75 | 68.44 | 4 | 933 | 0.5 | 0.5 | 1.7 | 2.2 | 1.6 | 2.9 | 4.3 | 3.8 | 5.1 | 9.9
7 | | PbAc | 75 | 72.19 | 4 | 948 | 0.5 | 0.5 | 1.7 | 3.2 | 4 | 4.1 | 4.5 | 5.7 | 8.8 | 6.9 | | PbAc | 75 | 68.67 | 4 | 950 | 0.5 | 0.5 | 0.5 | 2.2 | 2.3 | 3 | 4.9 | 3.7 | 4.3 | 4.9 | | PbAc | 75 | 75.81 | 4 | 956 | 0.5 | 0.5 | 1.9 | 3.6 | 1.5 | 3.5 | 3 | 3.8 | 4.7 | 5.4 | | Palmerton Loc 2 | 25 | 27.24 | 5 | 911 | 0.5 | 0.5 | 1.3 | 1.3 | 0.5 | 1.7 | 1.4 | 1.2 | 2.6 | 2.4 | | Palmerton Loc 2 | 25 | 26.00 | 5 | 929 | 0.5 | 0.5 | 0.5 | 0.5 | 1.1 | 0.5 | 1.1 | 1.2 | 1.7 | 3 | | Paimenton Loc 2 | 25 | 24.21 | 5 | 934 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 2.6 | 2.2 | | Paimerton Loc 2 | 25 | 23.48 | 5 | 947 | 0.5 | 0.5 | 1.2 | 0.5 | 0.5 | 1.4 | 1.3 | 1,1 | 0.5 | 2.2 | | Paimerton Loc 2 | 25 | 24.69 | 5 | 954 | 0.5 | 0.5 | 0.5 | 1.1 | 1.5 | 1.6 | 1.7 | 2.2 | | | | Paimerton Loc 2 | 75 | 69.33 | 6 | 903 | 0.5 | 0.5 | 0.5 | 2.1 | 3.6 | 3 | 2.2 | | 1.6 | 2.4 | | Palmerton Loc 2 | 75 | 70.84 | 6 | 910 | 0.5 | 1.2 | 1.7 | 2.6 | 2 | 3.4 | 3.5 | 28 | 2.5 | 3.2 | | Palmerton Loc 2 | 75 | 82.92 | 6 | 938 | 0.5 | 0.5 | 0.5 | 2 | 0.5 | 2.2 | 3.9 | 3.8
3.9 | 5.9 | 5.6 | | Palmerton Loc 2 | 75 | 78.69 | 6 | 951 | 0.5 | 0.5 | 3.1 | 3.8 | 3.4 | 6.2 | ******* | destruire de la companya de la comp | 3.8 | 4.3 | | Palmerton Loc 2 | 75 | 72.50 | 6 | 955 | 0.5 | 0.5 | 2 | 2.3 | 1.5 | 3.2 | 84 | 0.7 | 6 | 6 | | Palmenton Loc 2 | 225 | 206.38 | 7 | 906 | 0.5 | 1.3 | 2.2 | 3.7 | 5.5 | 6 | 3.3
5.5 | 3.6 | 6.5 | 3.7 | | Paimenton Loc 2 | 225 | 242.17 | 7 | 908 | 0.5 | 1.8 | 4.4 | 5.1 | 3.8 | 6.8 | 4.3 | 6.4 | 7.1 | 7
44 | | Palmerton Loc 2 | 225 | 239.97 | 7 | 916 | 0.5 | 1.5 | 4.2 | 4.6 | 4.5 | 9.1 | | 4.7 | | | | Palmerton Loc 2 | 225 | 242.12 | 7 | 918 | 0.5 | 1.1 | 2.2 | 2.6 | 3.7 | 5.9 | 6.2
5.5 | 6.3 | 6.4 | 7.9 | | Palmerton Loc 2 | 225 | 200.83 | 7 | 922 | 0.5 | 1.3 | 4 | 4.9 | 81 | 5.9
8.2 | | 4.8 | 6.1 | 6.7 | | Palmerton Loc 4 | 25 | 29.77 | 8 | 913 | 0.5 | 0.5 | 0.5 | 1.6 | 2.2 | - | 5.4 | 5.8 | 5.6 | 6.3 | | Palmerton Loc 4 | 25 | 25.47 | 8 | 914 | 0.5 | 1 | 0.5 | 0.5 | 2.2
0.5 | 1.5
0.5 | 1 | 1.6 | 1.7 | 2.4 | | Palmerton Loc 4 | 25 | 22.21 | 8 | 932 | 0.5 | 0.5 | 0.5 | 1,3 | 0.5
0.5 | 1.4 | 1.3 | 1.9 | 1.6 | 2.2 | | Palmerton Loc 4 | 25 | 22.85 | 8 | 937 | 0.5 | 1.2 | 0.5 | 1.2 | 1.4 | | 1.8 | 1 | 1.9 | 2.1 | | Paimerton Loc 4 | 25 | 25.45 | 8 | 946 | 0.5 | 0.5 | 0.5 | 0.5 | 1.4 | 1.1
1.5 | 1.4 | 0.5 | 1.9 | 2.2 | | Palmerton Loc 4 | 75 | 72.35 | 9 | 924 | 0.5 | 0.5 | 1.2 | 1.7 | | | 1.4 | 1.2
2.9 | 2.3 | 3.2 | | Palmerton Loc 4 | 75 | 84.89 | 9 | 926 | 0.5 | 0.5 | 1.2 | 1.4 | 3.9 | | 3.1 | | 3.7 | 4.1 | | Palmenton Loc 4 | 75 | 66.75 | 9 | 944 | 0.5 | 0.5 | 1.2 | 1.4 | 0.5
0.5 | 3 | 2.4 | 1.8 | 2.4 | 3.5 | | Palmerton Loc 4 | 75 | 75.79 | 9 | 949 | 0.5 | 0.5 | 1.1 | 1.7 | | 2.6 | 2.9 | 2 | 1.5 | 2.6 | | Palmerton Loc 4 | 75 | 74.90 | .9 | 957 | 0.5 | 0.5
0.5 | 0.5 | 1.8 | 1.4 | 2.8 | 3.4 | 2.6 | 3.3 | 3 | | Paimerton Loc 4 | 225 | 265.86 | 10 | 917 | 0.5 | 0.5 | 4.1 | | 3.1 | 3.1 | 2.7 | 4.2 | 3.2 | 4.4 | | Palmerton Loc 4 | 225 | 220.51 | 10 | 921 | 0.5 | 0.5 | | 5.4 | *************** | 5.2 | 5.6 | 8.3 | 8.4 | 9.1 | | Paimerton Loc 4 | 225 | 192.62 | 10 | 939 | 0.5 | 0.5
0.5 | 3.9 | 4.9
4.7 | 5# | 4.8 | 5 | 4.2 | 4.9 | 6.7 | | Palmerton Loc 4 | 225
225 | 204.43 | 10 | 941 | | | 2.3 | 4.7 | 3.9 | 5.8 | 4.6 | 6 | 5.8 | 5.7 | | | 444 | 207.73 | 10 | 1 | 0.5 | 0.5 | 1.4 | 3.2 | 3.8 | 3.6 | 3.7 | 4.5 | 4.2 | 4.7 | Average Time and Weight-Adjusted Dose for Each Pio TABLE A-6 Area Under Curve Determinations Calculated using interpolated values for missing or excluded data | | | | AUC (uc | /dL-days) F | or Time Spa | an Shown | | · | AUG 7-4-1 | |------|------|-------|---------|-------------|-------------|----------|-------|-------|------------------------| | pig# | 0-1 | 1-2 | 2-3 | 3-5 | 5-7 | 7-9 | 9-12 | 12-15 | AUC Total (ug/dL-days) | | 907 | 6.25 | 12.65 | 13.75 | 30.50 | 33.70 | 37.80 | 63.45 | 65.85 | 263.95 | | 912 | 5.60 | 10.80 | 11.75 | 26.30 | 27.20 | 30.30 | 49.20 | 47.55 | 208.70 | | 919 | 5.10 | 10.85 | 11.95 | 27.00 | 32.60 | 35.20 | 51.60 | 50.55 | 224.85 | | 930 | 5.80 | 11.60 | 12.80 | 28.00 | 31.20 | 33.80 | 51.45 | 52.05 | 226.70 | | 942 | 4.85 | 9.80 | 11.65 | 28.10 | 30.20 | 31.90 | 53.40 | 56.10 | 226.00 | | 943 | 5.30 | 9.25 | 10.00 | 24.30 | 27.20 | 29.20 | 45.60 | 45.60 | 196.45 | | 953 | 5.10 | 11.05 | 13.75 | 30.10 | 31.60 | 33.90 | 52.95 | 56.25 | 234.70 | | 901 | 0.50 | 0.50 | 0.50 | 1.00 | 1.00 | 1.00 | 1.50 | 1.50 | 7.50 | | 902 | 0.50 | 0.50 | 0.50 | 1.00 | 1.00 | 1.00 | 1.50 | 1.50 | 7.50 | | 920 | 0.50 | 0.50 | 0.50 | 1.00 | 1.00 | 1.00 | 1.50 | 1.50 | 7.50 | | 925 | 0.50 | 0.50 | 0.50 | 1.00 | 1.00 | 1.50 | 2.25 | 1.50 | 8.75 | | 928 | 0.50 | 0.50 | 0.50 | 1.00 | 1.00 | 1.00 | 1.50 | 1.50 | 7.50 | | 905 | 0.50 | 0.50 | 1.15 | 3.00 | 2.70 | 3.30 | 4.80 | 4.80 | 20.75 | | 909 | 0.50 | 0.75 | 0.75 | 2.20 | 2.80 | 3.40 | 8.85 | 8.70 | 27.95 | | 927 | 0.85 | 0.85 | 0.50 | 1.90 | 3.50 | 3.80 | 4.80 | 6.45 | 22.65 | | 931 | 0.95 | 1.25 | 1.20 | 2.40 | 3.20 | 4.80 | 7.95 |
7.05 | 28.80 | | 940 | 0.50 | 1.05 | 1.50 | 3.20 | 3.70 | 3.90 | 6.60 | 8.25 | 28.70 | | 923 | 0.50 | 1.30 | 1.70 | 3.50 | 4.30 | 4.30 | 7.35 | 12.90 | 35.85 | | 933 | 1.10 | 1.95 | 1.90 | 4.50 | 7.20 | 8.10 | 13.35 | 18.15 | 56.25 | | 948 | 1.10 | 2.45 | 3.60 | 8.10 | 8.60 | 10.20 | 18.75 | 20.55 | 73.35 | | 950 | 0.50 | 1.35 | 2.25 | 5.30 | 7.90 | 7.90 | 10.95 | 13.80 | 49.95 | | 956 | 1.20 | 2.75 | 2.55 | 5.00 | 6.50 | 6.80 | 12.75 | 15.15 | 52.70 | | 911 | 0.90 | 1.30 | 0.90 | 2.20 | 3.10 | 2.60 | 5.70 | 7.50 | 24.20 | | 929 | 0.50 | 0.50 | 0.80 | 1.60 | 1.60 | 2.10 | 4.05 | 7.05 | 18.20 | | 934 | 0.50 | 0.50 | 0.50 | 1.00 | 1.00 | 1.00 | 4.65 | 7.20 | 16.35 | | 947 | 0.85 | 0.85 | 0.50 | 1.90 | 2.70 | 2.40 | 2.40 | 3.90 | 15.50 | | 954 | 0.50 | 0.80 | 1.30 | 3.10 | 3.30 | 3.90 | 5.70 | 6.00 | 24.60 | | 903 | 0.50 | 1.30 | 2.85 | 6.60 | 5.20 | 5.00 | 7.95 | 8.55 | 37.95 | | 910 | 1.45 | 2.15 | 2.30 | 5.40 | 6.90 | 7.30 | 14.55 | 17.25 | 57.30 | | 938 | 0.50 | 1.25 | 1.25 | 2.70 | 6.10 | 7.80 | 11.55 | 12.15 | 43.30 | | 951 | 1.80 | 3.45 | 3.60 | 9.60 | 12.60 | 13.10 | 19.05 | 18.00 | 81.20 | | 955 | 1.25 | 2.15 | 1.90 | 4.70 | 6.50 | 6.90 | 15.15 | 15.30 | 53.85 | | 906 | 1.75 | 2.95 | 4.60 | 11.50 | 11.50 | 11.90 | 20.25 | 21.15 | 85.60 | | 908 | 3.10 | 4.75 | 4.45 | 10.60 | 11.10 | 9.00 | 13.50 | 13.05 | 69.55 | | 916 | 2.85 | 4.40 | 4.55 | 13.60 | 15.30 | 12.50 | 19.05 | 21.45 | 93.70 | | 918 | 1.65 | 2.40 | 3.15 | 9.60 | 11.40 | 10.30 | 16.35 | 19.20 | 74.05 | | 922 | 2.65 | 4.45 | 6.50 | 16.30 | 13.60 | 11.20 | 17.10 | 17.85 | 89.65 | | 913 | 0.50 | 1.05 | 1.90 | 3.70 | 2.50 | 2.60 | 4.95 | 6.15 | 23.35 | | 914 | 0.75 | 0.50 | 0.50 | 1.00 | 1.80 | 3.20 | 5.25 | 5.70 | 18.70 | | 932 | 0.50 | 0.90 | 0.90 | 1.90 | 3.20 | 2.80 | 4.35 | 6.00 | 20.55 | | 937 | 0.85 | 0.85 | 1.30 | 2.50 | 2.50 | 1.90 | 3.60 | 6.15 | 19.65 | | 946 | 0.50 | 0.50 | 0.90 | 2.80 | 2.90 | 2.60 | 5.25 | 8.25 | 23.70 | | 924 | 0.85 | 1.45 | 2.80 | 7.10 | 6.30 | 6.00 | 9.90 | 11.70 | 46.10 | | 926 | 0.85 | 1.30 | 0.95 | 3.50 | 5.40 | 4.20 | 6.30 | 8.85 | 31.35 | | 944 | 0.75 | 1.20 | 0.95 | 3.10 | 5.50 | 4.90 | 5.25 | 6.15 | 27.80 | | 949 | 0.80 | 1.40 | 1.55 | 4.20 | 6.20 | 6.00 | 8.85 | 9.45 | 38.45 | | 957 | 0.50 | 1.15 | 2.45 | 6.20 | 5.80 | 6.90 | 11.10 | 11.40 | 45.50 | | 917 | 2.30 | 4.75 | 4.50 | 8.80 | 10.80 | 13.90 | 25.05 | 26.25 | 96.35 | | 921 | 2.20 | 4.40 | 5.40 | 10.70 | 9.80 | 9.20 | 13.65 | 17.40 | 72.75 | | 939 | 1.40 | 3.50 | 4.30 | 9.70 | 10.40 | 10.60 | 17.70 | 17.25 | 74.85 | | 941 | 0.95 | 2.30 | 3.50 | 7.40 | 7.30 | 8.20 | 13.05 | 13.35 | 56.05 | | 945 | 1.55 | 3.05 | 2.85 | 6.40 | 10.10 | 11.30 | 17.70 | 19.35 | 72.30 | # TABLE A-5 RATIONALE FOR PbB OUTLIER DECISIONS No PbB Outliers Selected for this Study TABLE A - 7 TISSUE LEAD DATA | <u>pig n</u> umber | sample | group | material administered | dosage qualit | fler lab result (ug/L) | day | source file | MATRIX | Adjusted Value* | |--------------------|------------------|-------|-----------------------|---------------|------------------------|-----|-------------|--------|-----------------| | 907 | 8-990853 | 1 | ľV | 100 | 112 | 15 | T960131F | FEMUR | 56 | | 912 | 8-990878 | 1 | N | 100 | 84.8 | 15 | T960131F | FEMUR | 42.4 | | 919 | 8-990872 | 1 | IV. | 100 | 105 | 15 | T960131F | FEMUR | 52.5 | | 930 | 8-990870 | .1 | IV . | 100 | 92 | 15 | T960131F | FEMUR | 46 | | 942 | 8-990886 | 1 | N | 100 | 83.2 | 15 | T960131F | FEMUR | 41.6 | | 943 | 8-990856 | 1 | IV. | 100 | 84.3 | 15 | T960131F | FENUR | 42.15 | | 953 | 8-990857 | 1 | rv . | 100 | 82 | 15 | T960131F | FEMUR | 41 | | 901 | 8-990852 | 2 | Control | 0 < | 2 | 15 | T960131F | FEMUR | 0.5 | | 902 | 8-990888 | 2 | Control | 0 < | 2 | 15 | T960131F | FEMUR | 0.5 | | 920 | 8-990863 | 2 | Control | 0 < | 2 | 15 | T960131F | FEMUR | 0.5 | | 925 | 8-990889 | 2 | Control | 0 < | 2 | 15 | T960131F | FEMUR | 0.5 | | 928 | 8-990891 | 2 | Control | 0 < | 2 | 15 | T960131F | FEMUR | 0.5 | | 905 | 8-990879 | 3 | PbAc | 25 | 3.5 | 15 | T960131F | FEMUR | 1.75 | | 909 | 8-990896 | 3 | PbAc | 25 | 3.3 | 15 | T960131F | FEMUR | 1.65 | | 927 | 6-99 0557 | 3 | PbAc | 25 | 7.2 | 15 | T960131F | FEMUR | 3.6 | | 931 | 8-990871 | 3 | PbAc | 25 | 6.2 | 15 | T960131F | FEMUR | 3.1 | | 940 | 8-990858 | 3 | PbAc | 25 | 7.3 | 15 | T960131F | FEMUR | 3.65 | | 923 | 8-990854 | 4 | PbAc | 75 | 9.6 | 15 | T960131F | FEMUR | 4.8 | | 933 | 8-990877 | 4 | PbAc | 75 | 9.2 | 15 | T960131F | FEMUR | 4.6 | | 948 | 8-990859 | 4 | PbAc | 75 | 14.5 | 15 | T960131F | FEMUR | 7.25 | | 950 | 8-990851 | 4 | PbAc | 75 | 14.2 | 15 | T960131F | FELLIR | 7.1 | | 95 6 | 8-990845 | 4 | PbAc | 75 | 8.4 | 15 | T960131F | FEMIJR | 4.2 | | 911 | 8-990862 | 5 | Paimerton Loc 2 | 25 | 3.1 | 15 | T960131F | FEMUR | 1.55 | | 929 | 8-990865 | 5 | Palmerton Loc 2 | 25 < | 2 | 15 | T960131F | PEMUR | 0.5 | | 934 | 8-990882 | 5 | Palmerton Loc 2 | 25 | 4.9 | 15 | T960131F | FEMUR | 2.45 | | 947 | 8-990864 | 5 | Palmerton Loc 2 | 25 | 2.7 | 15 | T960131F | FEMUR | 1.36 | | 954 | 8-990880 | 5 | Paimerton Loc 2 | 25 | 5.6 | 15 | T960131F | FEMUR | 2.8 | | 903 | 8-990894 | 6 | Paimerton Loc 2 | 75 | 5.7 | 15 | T960131F | FEMUR | 2.85 | | 910 | 8-990867 | 6 | Paimerton Loc 2 | 75 | 9.6 | 15 | T960131F | FEMUR | 4.8 | | 938 | 8-990869 | 6 | Palmerton Loc 2 | 75 | 5.9 | 15 | T960131F | FEMUR | 2.95 | | 951 | 8-990890 | 6 | Palmerton Loc 2 | 75 | 8.4 | 15 | T960131F | FEMUR | 4.2 | | 955 | 8-990899 | 6 | Palmerton Loc 2 | 75 | 5.2 | 15 | T960131F | FBMUR | 2.6 | | 906 | 8-990883 | . 7 | Paimerton Loc 2 | 225 | 12.3 | 15 | T960131F | FEMUR | 6.15 | | 908 | 8-990868 | 7 | Palmerton Loc 2 | 225 | 15.5 | 15 | T960131F | FEMIR | 7.75 | | 916 | 8-990885 | 7 | Palmerton Loc 2 | 225 | 18.5 | 15 | T960131F | FEMUR | 9.25 | | 918 | 8-990876 | 7 | Palmerton Loc 2 | 225 | 17.3 | 15 | T960131F | FEMUR | 8.65 | | 922 | 8-990895 | 7 | Palmerton Loc 2 | 225 | 10.5 | 15 | T960131F | FEMA | 5.25 | | 913 | 8-990849 | 8 | Paimenton Loc 4 | 25 | 3.4 | 15 | T960131F | FEWLR | 1.7 | | 914 | 8-990866 | 8 | Palmerton Loc 4 | 25 | 4.5 | 15 | T960131F | FEMUR | 2.25 | | 932 | 8-990892 | 8 | Paimenton Loc 4 | 25 | 3.5 | 15 | T960131F | FEMUR | 1.75 | | 937 | 8-990848 | 8 | Palmerton Loc 4 | 25 | 2.9 | 15 | T960131F | FEMUR | 1.45 | | 946 | 8-990874 | 8 | Palmerton Loc 4 | 25 | 3.9 | 15 | T960131F | FEMUR | 1.95 | | 924 | 8-990846 | 9 | Palmerton Loc 4 | 75 | 6.3 | 15 | T960131F | FEMUR | 3.15 | | 926 | 8-990855 | 9 | Palmerton Loc 4 | 75 | 7.5 | 15 | T960131F | PEMUR | 3.75 | | 944 | 8-990881 | 9 | Palmerton Loc 4 | 75 | 6.3 | 15 | T960131F | FEMUR | 3.15 | | 949 | 8-990898 | 9 | Palmerton Loc 4 | 75 | 5.2 | 15 | T960131F | FEMUR | 2.6 | | 957 | 8-990893 | 9 | Palmetton Loc 4 | 75 | 5 | 15 | T960131F | FEMUR | 2.5 | | 917 | 8-990884 | 10 | Palmerton Loc 4 | 226 | 12.3 | 15 | T960131F | FEMUR | 6.15 | | 921 | 8-990847 | 10 | Paimerton Loc 4 | 225 | 16.3 | 15 | T960131F | FEMUR | 8,15 | | 939 | 8-990861 | 10 | Paimenton Loc 4 | 225 | 14.1 | 15 | T960131F | FENIA | 7.05 | | 941 | 8-990873 | 10 | Paimerton Loc 4 | 225 | 9.9 | 15 | T960131F | FEMUR | 4.96 | | 945 | 8-990860 | . 10 | Paimenton Loc 4 | 225 | 11.5 | 15 | T960131F | FEMUR | 5.75 | | 907 | 8-990823 | 1 | IV | 100 | 184 | 15 | T960120K | KIONEY | 1840 | | 912 | 8-990815 | 1 | N | 100 | 170 | 15 | T960120K | KIDNEY | 1700 | | 919 | 8-990795 | 1 | N | 100 | 120 | 15 | T960120K | KIDNEY | 1200 | | 930 | 8-990798 | 1 | N | 100 | 125 | 15 | T960120K | KIDNEY | 1250 | | 942 | 8-990811 | 1 | iv | 100 | 112 | 15 | T960120K | KIONEY | 1120 | | 943 | 8-990792 | 1 | Ň | 100 | 111 | 15 | T960120K | KIDNEY | 1110 | | 953 | 8-990819 | 1 | N | 100 | 113 | 15 | T960120K | KÆNEY | 1130 | | 901 | 8-990804 | 2 | Control | 0 | 2.3 | 15 | T960120K | KIONEY | 23 | | 902 | 8-990500 | 2 | Control | 0 < | 2 | 15 | T960120K | KIONEY | 10 | | 920 | 8-990791 | 2 | Control | 0 < | 2 | 15 | T960120K | KIDNEY | 10 | | 925 | 8-990806 | 2 | Control | 0 < | 2 | 15 | T960120K | KENEY | 10 | | 928 | 8-990801 | 2 | Control | 0 < | 2 | 15 | T960120K | KICNEY | 10 | | 905 | 8-990790 | 3 | PbAc | 25 | 3 | 15 | T960120K | KIONEY | 30 | | 909 | 8-990817 | 3 | PbAc | 25 | 5.7 | 15 | T960120K | KIDNEY | 57 | | 927 | 8-990830 | 3 | PhAc | 25 | 6 | 15 | T960120K | KENEY | 60 | | 931 | 8-990826 | 3 | PbAc | 25 | 5.5 | 15 | T960120K | KIONEY | 55 | | 940 | 8-990842 | 3 | PbAc | 25 | 11.7 | 15 | T960120K | KIONEY | 117 | | 923 | 8-990843 | 4 | PbAc | 75 | 18.7 | 15 | T960120K | KIDNEY | 187 | | 933 | 8-990802 | 4 | PbAc | 75 | 18.5 | 15 | T960120K | KIDNEY | 185 | | 948 | 8-990832 | 4 | PbAc | 75 | 31 | 15 | T960120K | KIONEY | 310 | | 950 | 8-990840 | 4 | PbAc | 75 | 15.3 | 15 | T960120K | KOONEY | 153 | | 956 | 8-990824 | 4 | PbAc | 75 | 24.6 | 15 | T960120K | KIDNEY | 246 | | 911 | 8-990836 | 5 . | Palmerton Loc 2 | 25 | 2.9 | 15 | T960120K | KENEY | 29 | | 929 | 8-990805 | . 5 | Palmenton Loc 2 | 25 | 4.1 | 15 | T960120K | KIONEY | 41 | | 934 | 8-990799 | 5 | Palmerton Loc 2 | 25 | 24.1 | 15 | T960120K | KIONEY | 241 | | 947 | 8-990835 | 5 | Palmerton Loc 2 | 25 | 6.4 | 15 | T960120K | KIDNEY | 64 | | 954 | 8-990814 | 5 - | Paimerton Loc 2 | 25 | 10.9 | 15 | T960120K | KENEY | 109 | | 903 | 8-990825 | 6 | Palmerton Loc 2 | 75 | 10.2 | 15 | T960120K | KIDNEY | 102 | | 910 | 8-990528 | 6 | Palmerton Loc 2 | 75 | 47.6 | 15 | T960120K | KIDNEY | 476 | | 938 | 8-990829 | 6 | Palmerton Loc 2 | 75 | 8.1 | 15 | T960120K | KIDNEY | 81 | | 951 | 8-990803 | 6 | Palmerton Loc 2 | 75 . | 47.6 | 15 | T980120K | KEINEY | 476 | | 955 | 8-990834 | 6 | Palmerton Loc 2 | 75 | 13.6 | 15 | T960120K | KIONEY | 136 | | 906 | 8-990837 | 7 | Paimerton Loc 2 | 225 | 26.1 | 15 | T960120K | KIONEY | 261 | | | | | | | | | | | | | pig number | sample | group | material administered | dosage qualifie | r lab result (ug/L) | day | source file | MATRIX | Adjusted Value ^s | |-------------|----------------------|----------|------------------------------------|-----------------
---------------------|----------|----------------------|----------------|-----------------------------| | 908 | 8-990831 | 7 | Palmerton Loc 2 | 225 | 18.3 | 15 | T960120K | KIONEY | 183 | | 916 | 8-990794 | 7 | Paimerton Loc 2 | 225 | 25.5 | 15 | T960120K | KIDNEY | 255 | | 918 | 8-990793 | 7 | Paimerton Loc 2 | 225 | 21.9 | 15 | T960120K | KIDNEY | 219 | | 922 | 8-990808 | 7 | Paimerton Loc 2 | 225 | 19.1 | 15 | T960120K | KIONEY | 191 | | 913 | 8-990813 | 8 | Palmerton Loc 4 | 25 | 3.3 | 15 | T960120K | KIDNEY | 33 | | 914 | 8-990818 | 8 | Palmerton Loc 4 | 25 | 5.4 | 15 | T960120K | KIDNEY | 54 | | 932 | 8-990812 | 8 | Palmerton Loc 4 | 25 | 4.8 | 15 | T960120K | KIDNEY | 48 | | 937 | 8-990807 | 8 | Palmerton Loc 4 | 25 | 3.9 | 15 | T960120K | KIONEY | 39 | | 946 | 8-990816 | 8 | Paimenton Loc 4 | 25 | 14.4 | 15 | T960120K | KIONEY | 144 | | 924
926 | 8-990820
8-990839 | 9 | Palmerton Loc 4 | 75
76 | 9.9 | 15 | T960120K | KIDNEY | 99 | | 944 | 8-990796 | 9 | Paimerton Loc 4 Paimerton Loc 4 | 75
75 | 8.2 | 15 | T960120K | KIDNEY | 82 | | 949 | 8-990809 | 9 | Paimenton Loc 4 | 75
75 | 11.5
7.7 | 15
15 | T960120K
T960120K | KIONEY | 115 | | 957 | 8-990821 | 9 | Paimerton Loc 4 | 75 | 5.7 | 15 | T960120K | KIDNEY | 77
57 | | 917 | 8-990827 | 10 | Palmerton Loc 4 | 225 | 22.8 | 15 | T960120K | KIDNEY | 228 | | 921 | 8-990833 | 10 | Paimerton Loc 4 | 225 | 24.4 | 15 | T960120K | KIONEY | 244 | | 939 | 8-990838 | 10 | Palmerton Loc 4 | 225 | 28.2 | 15 | T960120K | KIONEY | 282 | | 941 | 8-990822 | 10 | Palmerton Loc 4 | 225 | 13 | 15 | T960120K | KEDNEY | 130 | | 945 | 6-99079 7 | 10 | Palmerton Loc 4 | 225 | 16.1 | 15 | T960120K | KIDNEY | 161 | | 907 | 8-990765 | 1 | ₩ | 100 | 166 | 15 | T960120L | LIVER | 1660 | | 912 | 8-990737 | 1 | IV. | 100 | 155 | 15 | T960120L | LIVER | 1550 | | 919
'''0 | 8-990742 | 1 | IV. | 100 | 241 | 15 | T960120L | LIVER | 2410 | | 39 | 8-990752 | 1 | tv
n | 100 | 160 | 15 | T960120L | LIVER | 1600 | | | 8-990746
8-990751 | 1 | . K | 100
100 | 88 | 15 | T960120L | LIVER | 880 | | 953 | 8-990789 | i | IV | 100 | 149
103 | 15
15 | 7960120L
7960120L | LIVER | 1490 | | 901 | 8-990743 | 2 | Control | 0 < | 2 | 15 | T960120L | LIVER | 1030 | | 902 | 8-990735 | 2 | Control | 0 < | 2 | 15 | T960120L | LIVER | 10
10 | | 920 | 8-990736 | 2 | Control | ŏ « | 2 | 15 | T960120L | LIVER | 10 | | 925 | 8-990766 | . 2 | Control | Ō < | . 2 | 15 | T960120L | LIVER | 10 | | 928 | 8-990753 | 2 | Control | 0 < | 2 | 15 | T960120L | LIVER | 10 | | 905 | 8-990769 | 3 | PbAc | 25 | 4.1 | 15 | T960120L | LIVER | 41 | | 909 | 8-990772 | 3 | PbAc | 25 | 5.7 | 15 | T960120L | LEVER | 57 | | 927 | 8-990762 | 3 | PbAc | 25 | 6.1 | 15 | T960120L | LIVER | 61 | | 931 | 8-990763 | 3 | PbAc | 25 | 3.9 | 15 | T960120L | LEVER | 39 | | 940 | 8-990778 | 3 | PbAc | 25 | 11.1 | 15 | T960120L | LIVER | 111 | | 923
933 | 8-990784 | 4 | PbAc | 75 | 20 | 15 | T960120L | LIVER | 200 | | 948 | 8-990775
8-990740 | : | PbAc | 75 | 21.2 | 15 | 1960120L | LIVER | 212 | | 950 | 8-990781 | 7 | PbAc
PbAc | 75
75 | 32.6 | 15 | T960120L | LIVER | 326 | | 956 | 8-990768 | 4 | PbAc | 75
75 | 10.2
18.4 | 15 | T960120L | LIVER | 102 | | 911 | 8-990756 | 5 | Palmerton Loc 2 | 25 | 4.4 | 15
15 | T960120L | LIVER | 184 | | 929 | 8-990744 | 5 | Palmerton Loc 2 | 25 | 3.9 | 15 | T960120L
T960120L | LMER
LIVER | 44 | | 934 | 8-990755 | 5 | Paimerton Loc 2 | 25 | 12.8 | 15 | T960120L | LIVER | 39
125 | | 947 | 8-990749 | 5 | Paimerton Loc 2 | 25 | 9 | 15 | T960120L | LIVER | 90 | | 954 | 8-990738 | 5 | Palmerton Loc 2 | 25 | 5.5 | 15 | T960120L | LIVER | 55 | | 903 | 8-990774 | 6 | Palmerton Loc 2 | 75 | 12.3 | 15 | T960120L | LIVER | 123 | | 910 | 8-990741 | 6 | Palmerton Loc 2 | 75 | 44.5 | 15 | T960120L | LIVER | 445 | | 938 | 8-990786 | 6 | Palmenton Loc 2 | 75 | 5.8 | 15 | T960120L | LIVER | 58 | | 951 | 8-990747 | 6 | Paimerton Loc 2 | 75 | 39.2 | 15 | T960120L | LIVER | 392 | | 955
995 | 8-990761 | 6 | Paimenton Loc 2 | 75 | 9.2 | 15 | T960120L | LIVER | 92 | | 906
908 | 8-990767 | 7
7 | Paimenton Loc 2 | 225 | 23.9 | 15 | T960120L | LIVER | 239 | | 906
916 | 8-990760
8-990757 | 7 | Palmerton Loc 2 | 225 | 22.2 | 15 | T960120L | LIVER | 222 | | 918 | 8-990764 | 7 | Palmerton Loc 2
Palmerton Loc 2 | 225
225 | 35.1 | 15 | T960120L | LMER | 351 | | 922 | 8-990782 | 7 | Palmerton Loc 2 | 225
225 | 22
19.7 | 15
15 | T960120L | LIVER | 220 | | 913 | 8-990759 | 8 | Palmerton Loc 4 | 25 | 6.1 | 15 | T960120L
T960120L | LAKER | 197 | | 914 | 8-990785 | 8 | Paimerton Loc 4 | 25
25 | 4.8 | 15 | T960120L | LIVER
LIVER | 61
- 48 | | 932 | 8-990754 | . 8 | Palmerton Loc 4 | 25 | 3.2 | 15 | T960120L | LIVER | 32 | | 937 | 8-990750 | 8 | Palmerton Loc 4 | 25 | 3.5 | 15 | T960120L | LIVER | 35 | | 946 | 8-990773 | 8 | Palmerton Loc 4 | 25 | 8.1 | 15 | T960120L | LIVER | 81 | | 924 | 8-990758 | 9 | Palmerton Loc 4 | 75 | 7.1 | 15 | T960120L | LIVER | 71 | | 926 | 8-990770 | 9 | Palmenton Loc 4 | 75 | 13.1 | 15 | T960120L | LIVER | 131 | | 944 | 8-990788 | 9 | Paimerton Loc 4 | 75 | 11.5 | 15 | T960120L | LNER | 115 | | 949 | 8-990787 | 9 | Paimerton Loc 4 | 75 | 16.7 | 15 | T960120L | LIVER | 167 | | 957
047 | 8-990777 | 9 | Palmerton Loc 4 | 75 | 6.2 | 15 | 1960120L | LMER | 62 | | 917 | 8-990771 | 10 | Palmerton Loc 4 | 225 | 26.8 | 15 | T960120L | LNER | 268 | | 921
939 | 8-990783
8-990779 | 10
10 | Palmerton Loc 4 Palmerton Loc 4 | 226
225 | 28.8 | 15 | T960120L | LIVER | 285 | | 941 | 8-990745 | 10 | Paimenton Loc 4 | 225
225 | 27.7
12.3 | 15 | T960120L | LIVER | 277 | | 945 | 8-990739 | 10 | Paimerton Loc 4 | 225 | 12.3
25.3 | 15
15 | T960120L
T960120L | LIVER | 123 | | | | | - Tricker and Late 7 | 207 | 40.0 | i Ų | 1900 IZUL | LIVER | 253 | a Non-detects evaluated using 1/2 the quantitation limit. Laboratory results (ug/L) converted to tissue concentrations by dividing by sample dilution factors of 0.1 kg/L (liver, kidney) or 2 g/L (ashed bone). Final units are ug Pb/kg wet weight (liver, kidney) or ug Pb/g ashed bone (femur) TABLE A-8 SUMMARY OF ENDPOINT OUTLIERS Selected Outliers | test | target | Actual | | | MEASUREMENT ENDPOINT | | | | | |------------------|--------|--------|-------|------|----------------------|-------|-------|--------------|--| | materia! | dosage | Dose* | group | pig# | Blood | Femur | Liver | Kidney | | | IV | 100 | 119.50 | 1 | 907 | 263.95 | 58 | 1660 | 1840 | | | IV | 100 | 99.13 | i | 912 | 208.7 | 42.4 | 1550 | 1700 | | | IV | 100 | 113.67 | 1 | 919 | 224.85 | 52.5 | 2410 | 1200 | | | IV | 100 | 108.87 | 1 | 930 | 226.7 | 48 | 1600 | 1250 | | | IV | 100 | 101.49 | 1 | 942 | 228 | 41.6 | 880 | 1120 | | | IV | 100 | 94.26 | 1 | 943 | 196.45 | 42.15 | 1490 | | | | īV | 100 | 102.35 | i | 953 | 234.7 | 41 | 1030 | 1110
1130 | | | Control | 0 | 0.00 | 2 | 901 | 7.5 | 0.5 | 10 | 23 | | | Control | ŏ | 0.00 | 2 | 902 | 7.5 | 0.5 | 10 | 10 | | | Control | Ö | 0.00 | 2 | 920 | 7.5 | 0.5 | 10 | 1 | | | Control | ŏ | 0.00 | 2 | 925 | 8.75 | 0.5 | 10 | 10 | | | Control | ō | 0.00 | 2 | 928 | 7.5 | 0.5 | 10 | 10 | | | PbAc | 25 | 22,15 | 3 | 905 | 20.75 | 1.75 | 41 | 10 | | | PbAc | 25 | 23.78 | 3 | 909 | 27.95 | 1.65 | 57 | 30 | | | PbAc | 25 | 24.52 | 3 | 927 | 22.65 | 3.6 | 61 | 57 | | | PbAc | 25 | 26.64 | 3 | 931 | 28.8 | 3.5 | F = ' | 60 | | | PbAc | 25 | 27.18 | 3 | 940 | 28.7 | · I | 39 | 55 | | | PbAc | 75 | 88.61 | 4 | 923 | 35.65 c | 3.65 | 111 | 117 | | | PbAc | 75 | 68.44 | 4 | 933 | | 4.8 | 200 | 187 | | | PbAc | 75 | | 4 | | 56.25 | 4.6 | 212 | 185 | | | - | | 72.19 | - | 948 | 73.35 b | 7.25 | 326 b | 310 b | | | PbAc | 75 | 68.67 | 4 | 950 | 49.95 | 7.1 | 102 | 153 | | | PbAc | 75 | 75.81 | 4 | 956 | 52.7 | 4.2 | 184 | 248 | | | Pairmenton Loc 2 | | 27.24 | 5 | 911 | 24.2 | 1.55 | 44 | 29 | | | Palmerton Loc 2 | | 26.00 | 5 . | 929 | 18.2 | 0.5 | 39 | 41 | | | Palmerton Loc 2 | | 24.21 | 5 | 934 | 16.35 | 2.45 | 128 | 241 | | | Palmerton Loc 2 | | 23.48 | 5 | 947 | 15.5 | 1.35 | 90 | 64 | | | almerton Loc 2 | | 24.69 | _5 | 954 | 24.6 | 2.8 | 55 | 109 | | | Palmenton Loc 2 | _ | 69.33 | 6 | 903 | 37.95 | 2.85 | 123 | 102 | | | Paimenton Loc 2 | 75 | 70.84 | 6 | 910 | 57.3 | 4.8 | 445 b | 476 b | | | Palmerton Loc 2 | 75 | 82.92 | 6 | 938 | 43.3 | 2.95 | 58 | 81 | | | Palmerton Loc 2 | 75 | 78.69 | 6 | 951 | 81.2 b | 4.2 | 392 b | 476 b | | | Paimerton Loc 2 | 75 | 72.50 | 6 | 955 | 53.85 | 2.6 | 92 | 136 | | | Palmerton Loc 2 | 225 | 206.38 | 7 | 906 | 85.6 | 6.15 | 239 | 261 | | | elmenton Loc 2 | 225 | 242.17 | 7 | 908 | 69.55 | 7.75 | 222 | 183 | | | Palmerton Loc 2 | 225 | 239.97 | 7 | 916 | 93.7 | 9.25 | 351 | 255 | | | Palmerton Loc 2 | 225 | 242.12 | 7 | 918 | 74.05 | 8.65 | 220 | 219 | | | Palmerton Loc 2 | 225 | 200.83 | 7 | 922 | 89.65 | 5.25 | 197 | 191 | | | almerton Loc 4 | 25 | 29.77 | 8 | 913 | 23.35 | 1.7 | 61 | 33 | | | almerton Loc 4 | 25 | 25.47 | 8 | 914 | 18.7 | 2.25 | 48 | 54 | | | aimerton Loc 4 | 25 | 22.21 | 8 | 932 | 20.55 | 1.75 | 32 | 48 | | | Palmerton Loc 4 | 25 | 22.85 | 8 | 937 | 19.65 | 1.45 | 35 | 39 | | | almerton Loc 4 | 25 | 25.45 | 8 | 946 | 23.7 | 1.95 | 81 | 144 b | | | almerton Loc 4 | 75 | 72.35 | 9 | 924 | 46.1 | 3.15 | 71 | 99 | | | almerton Loc 4 | 75 | 84.89 | 9 | 926 | 31.35 | 3.75 | 131 | 82 | | | almerton Loc 4 | 75 | 66.75 | 9 | 944 | 27.8 | 3.15 | 115 | 115 | | | almerton Loc 4 | 75 | 75.79 | 9 | 949 | 38.45 | 2.6 | 167 | 1 '- | | | almeton Loc 4 | 75 | 74.90 | 9 | 957 | 45.5 | 2.5 | 62 | 77 | | | almerton Loc 4 | 225 | 265.86 | 10 | 917 | 96.35 | 6.15 | 268 | 228 | | | almerton Loc 4 | 225 | 220.51 | 10 | 921 | 72.75 | 8.15 | | | | | almenton Loc 4 | 225 | 192.62 | 10 | 939 | 72.75
74.85 | | 288 | 244 | | | aimenton Loc 4 | 225 | 204.43 | 10 | 941 | == | 7.05 | 277 | 282 b | | | | | | | 1 | 56.05 | 4.95 | 123 b | 130 | | | Paimerton Loc 4 | 225 | 239.02 | 10 | 945 | 72.3 | 5.75 | 253 | 161 | | a
priori outlier determinations (none selected in this study) b. Outside 95% Prediction Intervals. Outside 55% Prediction intervals In this does group, 3 of 5 values are close to the mean. Of the remaining two one is above and one is below the mean. The one high value is outside the 55% Prediction Interval, but the low value is inside the 95% Prediction Interval. Thus, the default rule is to exclude the high point and retain the low data point. However, retaining the low point in the absence of the high point causes the best fit curve to plateau at a much lower level (58 ug/dL-days) than seen for PbAc in other studies (e.g., 159 ug/dL-days). In fact, the best fit time for PbAc drops below the best fit line for text material, yielding RBA values that are greater than one. This is considered to be biologically implausible and inappropriate. Therefore, the low data point and the high data point were both excluded. This yielded a best fit more nearly in accord with other studies (plateau = 118 ug/dL-days), and yielded RBA values considered to be more plausible. TABLE A-9 Best Curve Fit Parameters Y=a+b*dose LIN | BLOOD | | BONE | | LIVER | | KIDNEY | | | | |----------|----------------|--------------|---------------------|------------|---------------------|------------|---------------------|--|--| | PbAc Cu | гvе - Ехр | PbAc Cur | PbAc Curve - Linear | | PbAc Curve - Linear | | PbAc Curve - Linear | | | | a | 7.22 | a | 0.87 | a | 18.41 | a | 25.06 | | | | b | | ь | 0.0634 | b | 2.036 | b | 2.14 | | | | C | 104 | C | | c | | Ċ | | | | | d | 0.0021 | d | | d | | ď | | | | | R2 | 0.982 | R2 | 0.771 | R2 | 0.854 | R2 | 0.87 | | | | Loc 2 Cu | пуе - Ехр | Loc 2 Cur | ve - Linear | Loc 2 Curv | e - Linear | Loc 2 Curv | re - Linear . | | | | _ | | | | | | | | | | | | 7.22 | 1 | 0.87 | | 18.41 | a | 25.06 | | | | b | | b | 0.0298 | b | 1.014 | b | 0.896 | | | | C | 104 | C | | c | | C | | | | | d | 0.006 | d | | ď | | d | | | | | R2 | 0.935 | R2 | 0.904 | R2 | 0.843 | R2 | 0.618 | | | | Loc 4 Cu | irve - Exp | Loc 4 Curr | /e - Linear | Loc 4 Curv | e - Linear | Loc 4 Curv | e - Linear | | | | a | 7.22 | | 0.87 | a | 18.41 | | 07.00 | | | | b | | b | 0.0249 | b | 1.103 | a | 25.06 | | | | c | 104 | Č | 0.0243 | == | 1.103 | b | 0.725 | | | | ď | 0.0047 | ď | | C | | C . | | | | | R2 | 0.934 | R2 | 0.070 | ď | | đ | | | | | 146 | U.004 | R2 | 0.879 | R2 | 0.913 | R2 | 0.87 | | | | | | | | | | | | | | | | Equations Used | | | | | | | | | | | EXP Y=a+c*(1-e | xp(-d*dose)) | l . | | | | | | | TABLE A-10 Relative Bioavailability of Lead in Test Materials | | Test Material | | | | | | |----------|---------------|------------|--|--|--|--| | Endpoint | Location 2 | Location 4 | | | | | | Blood | 0.74 | 0.58 | | | | | | Kidney | 0.42 | 0.34 | | | | | | Liver | 0.50 | 0.54 | | | | | | Bone | 0.47 | 0.39 | | | | | # **Definitions** Plausible Range: RBA(Blood) to mean RBA for Tissues Preferred Range: RBA(Blood) to (RBA(Blood) + RBA(Tissues))/2 Suggested Point Est: 1/2(RBA(Blood) + (RBA(Blood)+RBA(Tissues))/2) # Relative Bioavailability | | Locat | ion 2 | Loca | tion 4 | |-----------------|-------|-------|------|--------| | Plausible Range | 0.74 | 0.46 | 0.58 | 0.42 | | Preferred Range | 0.74 | 0.60 | 0.58 | 0.50 | | Point Estimate | 0.6 | 37 | 0. | 54 | # **Absolute Bioavailability** | | Locat | ion 2 | Loca | tion 4 | |-----------------|-------|-------|------|------------| | Plausible Range | 37% | 23% | 29% | 21% | | Preferred Range | 37% | 30% | 29% | 25% | | Point Estimate | 34 | % | 27 | ' % | TABLE A-11 INTRALABORATORY DUPLICATES RPD = Relative Percent Difference RPD = 100*[Orig-Dup]/((Orig+Dup)/2 * Non detects evaluated at 1/2 DL | Orig. pig number | group | material administered | dosage | day | matrix | Duplicate Value* | Original Value* | Average | RPD | Δυ | a RPD | |------------------|-------|-----------------------|---------|-----|--------|------------------|-----------------|---------|------|--------|----------| | 930 | 1 | IV | 100 | -4 | BLOOD | 0.5 | 0.5 | 0.5 | 0% | | 31/10 | | 916 | 7 | Palmerton Loc 2 | 25 | -4 | BLOOD | 0.5 | 0.5 | 0.5 | 0% | | | | 917 | 10 | Palmerton Loc 4 | 0 | -4 | BLOOD | 0.5 | 0.5 | 0.5 | 0% | | | | 930 | . 1 | IV | 100 | 0 | BLOOD | 0.5 | 0.5 | 0.5 | 0% | - | | | 916 | 7 | Palmerton Loc 2 | 25 | 0 | BLOOD | 1.7 | 1.5 | 1.6 | -13% | | | | 917 | 10 | Palmerton Loc 4 | 0 | 0 | BLOOD | 0.5 | 0.5 | 0.5 | 0% | | | | 930 | 1 | IV | 100 | 1 | BLOOD | 11.5 | 11.1 | 11.3 | -4% | | | | 916 | 7 | Palmerton Loc 2 | 25 | 1 | BLOOD | 3.6 | 4.2 | 3.9 | 15% | | | | 917 | 10 | Palmerton Loc 4 | 0 | 1 | BLOOD | 3.4 | 4.1 | 3.75 | 19% | | | | 930 | 1 | IV | 100 | 2 | BLOOD | 14,4 | 12.1 | | | | | | 916 | 7 | Palmerton Loc 2 | 25 | 2 | BLOOD | 4.7 | 4.6 | 13.25 | -17% | | | | 917 | 10 | Palmerton Loc 4 | 0 | 2 | BLOOD | 5.6 | 4.0
5.4 | 4.65 | -2% | | | | 930 | 1 | IV | 100 | 3 | BLOOD | 15.2 | 13.5 | 5.5 | -4% | | | | 916 | 7 | Palmerton Loc 2 | 25 | 3 | BLOOD | 5 | 4.5 | 14.35 | -12% | | | | 917 | 10 | Palmerton Loc 4 | Õ | 3 | BLOOD | 6.3 | 4.5
3.6 | 4.75 | -11% | | | | 930 | 1 | IV | 100 | 5 | BLOOD | 6.3
16.1 | | 4.95 | -55% | | | | 916 | 7 | Paimerton Loc 2 | 25 | 5 | BLOOD | | 14.5 | 15.3 | -10% | | | | 917 | 10 | Palmerton Loc 4 | 25
0 | 5 | BLOOD | 10.2 | 9.1 | 9.65 | -11% | | | | 930 | 1 | IV | 100 | 7 | BLOOD | 6.3 | 5.2 | 5.75 | -19% | | | | 916 | 7 | Palmerton Loc 2 | 25 | 7 | BLOOD | 16.4 | 16.7 | 16.55 | 2% | | | | 917 | 10 | Palmerton Loc 4 | 23
0 | 7 | | 6.9 | 6.2 | 6.55 | -11% | | | | 930 | 1 | IV | _ | - | BLOOD | 6.1 | 5.6 | 5.85 | -9% | | | | 916 | 7 | Palmerton Loc 2 | 100 | 9 | BLOOD | 17.3 | 17.1 | 17.2 | -1% | | | | 917 | 10 | | 25 | 9 | BLOOD | 6.5 | 6.3 | 6.4 | -3% | | | | 930 | 1 | Palmerton Loc 4 | 0 | 9 | BLOOD | 7.5 | 8.3 | 7.9 | 10% | | | | 916 | 7 | | 100 | 12 | BLOOD | 19 | 17.2 | .18.1 | -10% | | | | 917 | 10 | Palmerton Loc 2 | 25 | 12 | BLOOD | 7.1 | 6.4 | 6.75 | -10% | | | | | | Palmerton Loc 4 | 0 | 12 | BLOOD | 8.4 | 8.4 | 8.4 | 0% | | | | 930 | 1 | IV | 100 | 15 | BLOOD | 17.9 | 17.5 | 17.7 | -2% | | | | 916
017 | 7 | Palmerton Loc 2 | 25 | 15 | BLOOD | 8.2 | 7.9 | 8.05 | -4% | | | | 917 | | Palmerton Loc 4 | 0 | 15 | BLOOD | 9.3 | 9.1 | 9.2 | -2% | -0.054 | BLOO | | 930 | - | IV . | 100 | | FEMUR | 83 | 92 | 87.5 | 10% | | | | 916 | 7 | Palmerton Loc 2 | 25 | | FEMUR | 19.1 | 18.5 | 18.8 | -3% | | | | 917 | | Palmerton Loc 4 | 0 | | FEMUR | 12.9 | 12.3 | 12.6 | -5% | 0.008 | FEMU | | 930 | | IV . | 100 | 15 | KIDNEY | 134 | 125 | 129.5 | -7% | 2 | | | 916 | | Palmerton Loc 2 | 25 | 15 | KIDNEY | 26 | 25.5 | 25.75 | -2% | | | | 917 | | Palmerton Loc 4 | 0 | 15 | KIDNEY | 27.1 | 22.8 | 24.95 | -17% | -0.087 | KIDNE | | 930 | • | IV . | 100 | 15 | LIVER | 115 | 160 | 137.5 | 33% | | , VIDIAL | | 916 | | Palmerton Loc 2 | 25 | 15 | LIVER | 33 | 35.1 | 34.05 | 6% | | | | 917 | 10 | Palmerton Loc 4 | 0 | 15 | LIVER | 25.6 | 26.8 | 26.2 | 5% | 0.145 | LIVER | **TABLE A-12 CDC STANDARDS** | | | | | Measured | | Nominal | |-----------|---------|---|---------|----------|----------|---------------| | Sample ID | Day | Q | Low Std | Med Std | High Std | Concentration | | 9.1 | -4 | < | 1.0 | | - | 1.7 | | 9.1 | 0 | | 1.3 | | | 1.7 | | 9.1 | 1 | | 1.0 | | | 1.7 | | 9.1 | 3 | < | 1.0 | | | 1.7 | | 9.1 | 9 | < | 1.0 | | | 1.7 | | 9.2 | -4 | | | 3.2 | | 4.8 | | 9.2 | 0 | | | 3.8 | | 4.8 | | 9.2 | 1 | | | 4.3 | | 4.8 | | 9.2 | 2 | | | 4.0 | | 4.8 | | 9.2 | 5 | | , | 4.3 | | 4.8 | | 9.2 | 7 | | | 4.6 | | 4.8 | | 9.2 | 12 | | | 4.5 | | 4.8 | | 9.2 | 15 | | | 4.1 | | 4.8 | | 9.3 | 2 | | | | 12.7 | 14.9 | | 9.3 | 3 | | | | 13.4 | 14.9 | | 9.3 | 5 | | | | 16.1 | 14.9 | | 9.3 | 7 | | | | 15.3 | 14.9 | | 9.3 | 9 | | | | 12.9 | 14.9 | | 9.3 | 12 | | | | 16.5 | 14.9 | | 9.3 | 15 | | | | 14.9 | 14.9 | | Α | verages | | 1.1 | 4.1 | 14.5 | NA | **TABLE A-13 INTERLABORATORY COMPARISON** | Tag | Pig | Group | Material | Dosage | Qu | alifier | | Result | | | |----------|--------|-------|-----------------|-----------------|-----|---------|-----|--------|---------|-----| | Number | Number | | Administered | | CDC | EPA | CDC | EPA | Average | RPD | | 8-990127 | 916 | 7 | Palmerton Loc 2 | 225 | U | < | 0.6 | 1.0 | 0.8 | 50 | | 8-990154 | 910 | 6 | Palmerton Loc 2 | 75 | U | < | 0.6 | 1.0 | 0.8 | 50 | | 8-990196 | 927 | 3 | PbAc | 25 | U | < | 0.6 | 1.0 | 0.8 | 50 | | 8-990225 | 903 | 6 | Palmerton Loc 2 | 75 | U | < | 0.6 | 1.0 | 0.8 | 50 | | 8-990269 | 903 | 6 | Palmerton Loc 2 | 75 | | < | 1.1 | 1.0 | 1.1 | -10 | | 8-990280 | 917 | 10 | Palmerton Loc 4 | 225 |] | | 4.0 | 4.1 | 4.1 | 2 | | 8-990311 | 922 | 7 | Palmerton Loc 2 | 225 | , | | 5.5 | 4.9 | 5.2 | -12 | | 8-990332 | 906 | 7 | Palmerton Loc 2 | 225 | | | 4.1 | 3.7 | 3.9 | -10 | | 8-990364 | 951 | 6 | Palmerton Loc 2 | 75 | | | 5.5 | 3.4 | 4.5 | -47 | | 8-990371 | 920 | 2 | Control | 0 | U | < | 0.6 | 1.0 | 0.8 | 50 | | 8-990409 | 932 | . 8 | Palmerton Loc 4 | 25 | | | 1.3 | 1.4 | 1.4 | 7 | | 8-990417 | 9.2 | | | | ! | • | 4.8 | 4.3 | 4.6 | -11 | | 8-990475 | 931 | 3 | PbAc | 25 | . | | 2.2 | 2.1 | 2.2 | -5 | | 8-990496 | 923 | 4 | PbAc | 75 | | | 2.1 | 2.1 | 2.1 | o | | 8-990539 | 903 | 6 | Palmerton Loc 2 | 75 | | | 2.8 | 2.8 | 2.8 | Ö | | 8-990555 | 925 | 2 | Control | 0 | U | < | 0.6 | 1.0 | 0.8 | 50 | | 8-990585 | 954 | 5 | Paimerton Loc 2 | 25 | | | 2.3 | 1.6 | 2.0 | -36 | | 8-990591 | 923 | 4 | PbAc | 75 | l • | | 3.2 | 2.7 | 3.0 | -17 | | 8-990647 | 927 | 3 | PbAc | 25 [*] | | | 2.4 | 2.8 | 2.6 | 15 | | 8-990659 | 922 | 7 | Palmerton Loc 2 | 225 | | | 5.6 | 6.3 | 6.0 | 12 | FIGURE A-2 Palmerton Location 2 Groups by Day Raw Data FIGURE A-3 Paimerton Location 4 Groups By Day Raw Data FIGURE A-4 Group Mean PbB vs. Day Raw Data FIGURE A-5 BEST FIT CURVE WITH 95% PREDICTION INTERVALS* | Parameters | Value | Std. Error | 95% Confidence Limits | | | | |------------|--------|-------------|-----------------------|---|--|--| | а | 7.22 | fixed value | _ | - | | | | С | 104 | fixed
value | _ | _ | | | | d | 0.0081 | 0.0003 | 0.0075 0.008 | | | | | Adj R ² | 0.982 | |--------------------|-------| #### FIGURE A-6 BEST FIT CURVE WITH 95% PREDICTION INTERVALS* | Parameters | Value | Std. Error | 95% Confidence Limits | | | |------------|-------|-------------|-----------------------|--------|--| | а | 7.22 | fixed value | | - | | | С | 104 | fixed value | | — · | | | d | 0.006 | 0.0004 | 0.0051 | 0.0069 | | |
_ | _ | | | | | |-------|-------|-------|---|----|--| | Adj | R^2 |
0 | 9 | 35 | | FIGURE A-7 BEST FIT CURVE WITH 95% PREDICTION INTERVALS* | Parameters | Value | Std. Error | 95% Confid | dence Limits | |------------|--------|-------------|------------|--------------| | a 7.22 | | fixed value | - - | | | ·C | 104 | fixed value | - | | | d | 0.0047 | 0.0003 | 0.0041 | 0.0053 | | Adj | R^2 | 0.934 | |-----|-------|-------| FIGURE A-8 BEST FIT CURVE WITH 95% PREDICTION INTERVALS* | Parameters Value | | Std. Error | 95% Confidence Limits | | |------------------|-------|-------------|-----------------------|--------| | а | 0.87 | fixed value | | _ | | b | 0.063 | 0.0061 | 0.0502 | 0.0765 | | Adj R ² | 0.771 | |--------------------|-------| FIGURE A-9 BEST FIT CURVE WITH 95% PREDICTION INTERVALS* | Parameters Value | | Std. Error | Error 95% Confidence | | |------------------|--------|-------------|----------------------|--------| | а | 0.87 | fixed value | - | _ | | b | 0.0298 | 0.0016 | 0.0264 | 0.0331 | | Adj R ² | 0.903 | |--------------------|-------| FIGURE A-10 BEST FIT CURVE WITH 95% PREDICTION INTERVALS* | Parameters Value | | Std. Error | 95% Confidence Limits | | | |------------------|-------|-------------|-----------------------|-------|--| | a | 0.87 | fixed value | _ | _ | | | b | 0.025 | 0.0015 | 0.022 | 0.028 | | | Adj | R2 | 0.879 | |-----|----|-------| FIGURE A-11 BEST FIT CURVE WITH 95% PREDICTION INTERVALS* | Parameters | Value | Std. Error | dence Limits | | |------------|-------|-------------|--------------|-----| | а | 18.41 | fixed value | _ | - | | b | 2.036 | 0.17 | 1.67 | 2.4 | | | | | | · | | ۰ | | | |---|--------------------|-------| | l | Adj R ² | 0.854 | FIGURE A-12 BEST FIT CURVE WITH 95% PREDICTION INTERVALS* | Parameters | Value | Std. Error | 95% Confid | 6 Confidence Limits | | |------------|-------|-------------|------------|---------------------|--| | a | 18.41 | fixed value | _ | _ | | | b | 1.014 | 0.074 | 0.858 | 1.169 | | | 7 A A i D 4 | U 5/3 | |-------------|--------| | Auir | U.U-13 | | | | FIGURE A-13 BEST FIT CURVE WITH 95% PREDICTION INTERVALS* | Parameters | Value | Std. Error | 95% Confidence Limits | | |------------|-------|-------------|-----------------------|-------| | а | 18.41 | fixed value | | - | | b | 1.103 | 0.058 | 0.982 | 1.225 | Adj R² 0.913 FIGURE A-14 BEST FIT CURVE WITH 95% PREDICTION INTERVALS* | Parameters | Value | Std. Error | 95% Confid | ence Limits | |------------|-------|-------------|------------|-------------| | а | 25.06 | fixed value | - 1 | | | b | 2.14 | 0.172 | 1.768 | 2.511 , | | | | | | | Adj R² 0.87 FIGURE A-15 BEST FIT CURVE WITH 95% PREDICTION INTERVALS* | Parameters | Value | Std. Error 95% Confidence Lim | | lence Limits | |------------|-------|-------------------------------|-------|--------------| | a | 25.06 | fixed value | | _ | | b | 0.897 | 0.106 | 0.673 | 1.12 . | | Adj R ² | 0.618 | |--------------------|-------| FIGURE A-16 BEST FIT CURVE WITH 95% PREDICTION INTERVALS* | Parameters | Value | Std. Error | 95% Confidence Limits | | |------------|-------|-------------|-----------------------|-------| | а | 25.06 | fixed value | _ | | | Ь | 0.725 | 0.051 | 0.618 | 0.832 | Adj R² 0.87 #### **DISK INSTRUCTIONS** Enclosed is a disk entitled "PALMRTN.EXE." This disk contains all of the data items and all of the data reduction steps for the Palmerton site in a Microsoft Excel spreadsheet named "PALMERTN.XLS". This file is intended to allow detailed review and evaluation by outside parties of all aspects of the study. In order to conserve space and help guard against accidental changes in the spreadsheet, all of the formulas and links present in the original spreadsheet used by EPA have been "frozen". Due to the size of the file (approximately 2 MB), it has been provided as a self-extracting zipped file. To extract the file from the enclosed disk to a location on your hard drive, the following steps should be taken: - 1) Go to the DOS Prompt - 2) Change directory to desired destination directory (e.g., C:\data) - 3) Place the source disk in the appropriate drive (e.g., A:) - 4) At the DOS prompt (C:\data>) type "A:\PALMERTN" and press enter. This will cause the PALMERTN.XLS file to extract from your source disk (A:) to your destination directory (C:\data) - 5) Open Microsoft Excel to view the unzipped file. Note that even though the formulas have been frozen, the file remains quite large, so it is recommended that the user have a minimum of 8 MB of RAM to facilitate use of this spreadsheet.